Feeds:
Posts
Comments

Posts Tagged ‘IPCC’

I haven’t forgotten about this project! Read the introduction and ODE derivation if you haven’t already.

Last time I derived the following ODE for temperature T at time t:

where S and τ are constants, and F(t) is the net radiative forcing at time t. Eventually I will discuss each of these terms in detail; this post will focus on S.

At equilibrium, when dT/dt = 0, the ODE necessitates T(t) = S F(t). A physical interpretation for S becomes apparent: it measures the equilibrium change in temperature per unit forcing, also known as climate sensitivity.

A great deal of research has been conducted with the aim of quantifying climate sensitivity, through paleoclimate analyses, modelling experiments, and instrumental data. Overall, these assessments show that climate sensitivity is on the order of 3 K per doubling of CO2 (divide by 5.35 ln 2 W/m2 to convert to warming per unit forcing).

The IPCC AR4 report (note that AR5 was not yet published at the time of my calculations) compared many different probability distribution functions (PDFs) of climate sensitivity, shown below. They follow the same general shape of a shifted distribution with a long tail to the right, and average 5-95% confidence intervals of around 1.5 to 7 K per doubling of CO2.

Box 10.2, Figure 1 of the IPCC AR4 WG1: Probability distribution functions of climate sensitivity (a), 5-95% confidence intervals (b).

These PDFs generally consist of discrete data points that are not publicly available. Consequently, sampling from any existing PDF would be difficult. Instead, I chose to create my own PDF of climate sensitivity, modelled as a log-normal distribution (e raised to the power of a normal distribution) with the same shape and bounds as the existing datasets.

The challenge was to find values for μ and σ, the mean and standard deviation of the corresponding normal distribution, such that for any z sampled from the log-normal distribution,

Since erf, the error function, cannot be evaluated analytically, this two-parameter problem must be solved numerically. I built a simple particle swarm optimizer to find the solution, which consistently yielded results of μ = 1.1757, σ = 0.4683.

The upper tail of a log-normal distribution is unbounded, so I truncated the distribution at 10 K, consistent with existing PDFs (see figure above). At the beginning of each simulation, climate sensitivity in my model is sampled from this distribution and held fixed for the entire run. A histogram of 106 sampled points, shown below, has the desired characteristics.

Histogram of 106 points sampled from the log-normal distribution used for climate sensitivity in the model.

Histogram of 106 points sampled from the log-normal distribution used for climate sensitivity in the model.

Note that in order to be used in the ODE, the sampled points must then be converted to units of Km2/W (warming per unit forcing) by dividing by 5.35 ln 2 W/m2, the forcing from doubled CO2.

Read Full Post »

Today my very first scientific publication is appearing in Geophysical Research Letters. During my summer at UVic, I helped out with a model intercomparison project regarding the effect of climate change on Atlantic circulation, and was listed as a coauthor on the resulting paper. I suppose I am a proper scientist now, rather than just a scientist larva.

The Atlantic meridional overturning circulation (AMOC for short) is an integral part of the global ocean conveyor belt. In the North Atlantic, a massive amount of water near the surface, cooling down on its way to the poles, becomes dense enough to sink. From there it goes on a thousand-year journey around the world – inching its way along the bottom of the ocean, looping around Antarctica – before finally warming up enough to rise back to the surface. A whole multitude of currents depend on the AMOC, most famously the Gulf Stream, which keeps Europe pleasantly warm.

Some have hypothesized that climate change might shut down the AMOC: the extra heat and freshwater (from melting ice) coming into the North Atlantic could conceivably lower the density of surface water enough to stop it sinking. This happened as the world was coming out of the last ice age, in an event known as the Younger Dryas: a huge ice sheet over North America suddenly gave way, drained into the North Atlantic, and shut down the AMOC. Europe, cut off from the Gulf Stream and at the mercy of the ice-albedo feedback, experienced another thousand years of glacial conditions.

A shutdown today would not lead to another ice age, but it could cause some serious regional cooling over Europe, among other impacts that we don’t fully understand. Today, though, there’s a lot less ice to start with. Could the AMOC still shut down? If not, how much will it weaken due to climate change? So far, scientists have answered these two questions with “probably not” and “something like 25%” respectively. In this study, we analysed 30 climate models (25 complex CMIP5 models, and 5 smaller, less complex EMICs) and came up with basically the same answer. It’s important to note that none of the models include dynamic ice sheets (computational glacial dynamics is a headache and a half), which might affect our results.

Models ran the four standard RCP experiments from 2006-2100. Not every model completed every RCP, and some extended their simulations to 2300 or 3000. In total, there were over 30 000 model years of data. We measured the “strength” of the AMOC using the standard unit Sv (Sverdrups), where each Sv is 1 million cubic metres of water per second.

Only two models simulated an AMOC collapse, and only at the tail end of the most extreme scenario (RCP8.5, which quite frankly gives me a stomachache). Bern3D, an EMIC from Switzerland, showed a MOC strength of essentially zero by the year 3000; CNRM-CM5, a GCM from France, stabilized near zero by 2300. In general, the models showed only a moderate weakening of the AMOC by 2100, with best estimates ranging from a 22% drop for RCP2.6 to a 40% drop for RCP8.5 (with respect to preindustrial conditions).

Are these somewhat-reassuring results trustworthy? Or is the Atlantic circulation in today’s climate models intrinsically too stable? Our model intercomparison also addressed that question, using a neat little scalar metric known as Fov: the net amount of freshwater travelling from the AMOC to the South Atlantic.

The current thinking in physical oceanography is that the AMOC is more or less binary – it’s either “on” or “off”. When AMOC strength is below a certain level (let’s call it A), its only stable state is “off”, and the strength will converge to zero as the currents shut down. When AMOC strength is above some other level (let’s call it B), its only stable state is “on”, and if you were to artificially shut it off, it would bounce right back up to its original level. However, when AMOC strength is between A and B, both conditions can be stable, so whether it’s on or off depends on where it started. This phenomenon is known as hysteresis, and is found in many systems in nature.

This figure was not part of the paper. I made it just now in MS Paint.

Here’s the key part: when AMOC strength is less than A or greater than B, Fov is positive and the system is monostable. When AMOC strength is between A and B, Fov is negative and the system is bistable. The physical justification for Fov is its association with the salt advection feedback, the sign of which is opposite Fov: positive Fov means the salt advection feedback is negative (i.e. stabilizing the current state, so monostable); a negative Fov means the salt advection feedback is positive (i.e. reinforcing changes in either direction, so bistable).

Most observational estimates (largely ocean reanalyses) have Fov as slightly negative. If models’ AMOCs really were too stable, their Fov‘s should be positive. In our intercomparison, we found both positives and negatives – the models were kind of all over the place with respect to Fov. So maybe some models are overly stable, but certainly not all of them, or even the majority.

As part of this project, I got to write a new section of code for the UVic model, which calculated Fov each timestep and included the annual mean in the model output. Software development on a large, established project with many contributors can be tricky, and the process involved a great deal of head-scratching, but it was a lot of fun. Programming is so satisfying.

Beyond that, my main contribution to the project was creating the figures and calculating the multi-model statistics, which got a bit unwieldy as the model count approached 30, but we made it work. I am now extremely well-versed in IDL graphics keywords, which I’m sure will come in handy again. Unfortunately I don’t think I can reproduce any figures here, as the paper’s not open-access.

I was pretty paranoid while coding and doing calculations, though – I kept worrying that I would make a mistake, never catch it, and have it dredged out by contrarians a decade later (“Kate-gate”, they would call it). As a climate scientist, I suppose that comes with the job these days. But I can live with it, because this stuff is just so darned interesting.

Read Full Post »

Throughout all the years of public disputes about climate change, arguably no scientist has taken as much flak as Dr. Michael Mann. This mild-mannered paleoclimatologist is frequently accused of fraud, incompetence, scientific malpractice, Communism, and orchestrating a New World Order. These charges have been proven baseless time and time again, but the accusations continue. Dr. Mann’s research on climate change is inconvenient for those who wish to deny that current global temperatures are unusual, so he has become the bulls-eye target in a fierce game of “shoot the messenger”. In “The Hockey Stick and the Climate Wars: Dispatches from the Front Lines”, a memoir of his experiences, Michael Mann finally speaks out.

The story begins quite harmlessly: an account of how he became a scientist, from childhood curiosity to graduate work in theoretical physics to choosing climate science on a whim out of the university course calendar. For those who have followed Dr. Mann’s research over the years, there is some great backstory – how he met his coauthors Ray Bradley and Malcolm Hughes, the formation of the IPCC TAR chapter about paleoclimate, and how the RealClimate blog operates. This book also filled in some more technical gaps in my understanding with a reasonably accessible explanation of principal component ananlysis, a summary of millennial paleoclimate research before 1998, and an explanation of exactly how Mann, Bradley and Hughes’ 2008 paper built on their previous work.

Dr. Mann’s 1998 paper – the “hockey stick” – was a breakthrough because it was the first millennial reconstruction of temperature that had global coverage and an annual resolution. He considered the recent dramatic rise in temperatures to be the least interesting part of their work, because it was already known from instrumental data, but that part of the paper got the most public attention.

It seems odd for a scientist to downplay the importance of his own work, but that’s what Dr. Mann does: he stresses that, without the hockey stick, the case for climate change wouldn’t be any weaker. Unfortunately, his work was overemphasized on all sides. It was never his idea to display the hockey stick graph so prominently in the IPCC TAR, or for activists to publicize his results the way they did. Soon the hockey stick became the holy grail of graphs for contrarians to destroy. As Ben Santer says, “There are people who believe that if they can bring down Mike Mann, they can bring down the IPCC,” and the entire field of climate science as a result.

Michael Mann is an eloquent writer, and does a fabulous job of building up tension. Most readers will know that he was the target of countless attacks from climate change deniers, but he withholds these experiences until halfway through the book, choosing instead to present more context to the story. The narrative keeps you on your toes, though, with frequent allusions to future events.

Then, when the full story comes out, it hits hard. Death threats, and a letter full of suspicious white powder. Lobby groups organizing student rallies against Mann on his own campus, and publishing daily attack ads in the campus newspaper. Discovering that his photo was posted as a “target” on a neo-Nazi website that insisted climate change was a Jewish conspiracy. A state politician from the education committee threatening to cut off funding to the entire university until they fired Mann.

Throughout these attacks, Dr. Mann consistently found trails to the energy industry-funded Scaife Foundation. However, I think he needs to be a bit more careful when he talks about the links between oil companies and climate change denial – the relationship is well-known, but it’s easy to come off sounding like a conspiracy theorist. Naomi Oreskes does a better job of communicating this area, in my opinion.

Despite his experiences, Michael Mann seems optimistic, and manages to end the book on a hopeful note about improvements in climate science communication. He is remarkably well-adjusted to the attacks against him, and seems willing to sacrifice his reputation for the greater good. “I can continue to live with the cynical assaults against my integrity and character by the corporate-funded denial machine,” he writes. “What I could not live with is knowing that I stood by silently as my fellow human beings, confused and misled by industry-funded propaganda, were unwittingly led down a tragic path that would mortgage future generations.”

“The Hockey Stick and the Climate Wars” leaves me with a tremendous empathy for Dr. Mann and all that he has gone through, as well as a far better understanding of the shouting match that dominates certain areas of the Internet and the media. It is among the best-written books on climate science I have read, and I would highly recommend it to all scientists and science enthusiasts.

“The Hockey Stick and the Climate Wars” will be released on March 6th, and the Kindle version is already available.

Read Full Post »

A growing body of research is showing that humans are likely causing more than 100% of global warming: without our influences on the climate, the planet would actually be cooling slightly.

In 2007, the Intergovernmental Panel on Climate Change published its fourth assessment report, internationally regarded as the most credible summary of climate science to date. It concluded that “most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations”.

A clear question remains: How much is “most”? 51%? 75%? 99%? At the time that the IPCC report was written, the answer was unclear. However, a new frontier of climate research has emerged since, and scientists are working hard to quantify the answer to this question.

I recently attended the 2011 American Geophysical Union Fall Meeting, a conference of over 20 000 scientists, many of whom study the climate system. This new area of research was a hot topic of discussion at AGU, and a phrase that came up many times was “more than 100%”.

That’s right, humans are probably causing more than 100% of observed global warming. That means that our influences are being offset by natural cooling factors. If we had never started burning fossil fuels, the world would be cooling slightly.

In the long term, oscillations of the Earth’s orbit show that, without human activity, we would be very slowly descending into a new ice age. There are other short-term cooling influences, though. Large volcanic eruptions, such as Mount Pinatubo in 1991, have thrown dust into the upper atmosphere where it blocks a small amount of sunlight. The sun, particularly in the last few years, has been less intense than usual, due to the 11-year sunspot cycle. We have also experienced several strong La Niña events in the Pacific Ocean, which move heat out of the atmosphere and into the ocean.

However, all of these cooling influences pale in comparison to the strength of the human-caused warming influences. The climate change communication project Skeptical Science recently summarized six scientific studies in this graphic:

Most of the studies estimated that humans caused over 100% of the warming since 1950, and all six put the number over 98%. Additionally, most of the studies find natural influences to be in the direction of cooling, and all six show that number to be close to zero.

If you are interested in the methodologies and uncertainty ranges of these six studies, Skeptical Science goes into more detail, and also provides links to the original journal articles.

To summarize, the perception that humans are accelerating a natural process of warming is false. We have created this problem entirely on our own. Luckily, that means we have the power to stop the problem in its tracks. We are in control, and we choose what happens in the future.

Read Full Post »

Part 3 in a series of 5 for NextGen Journal
Adapted from part of an earlier post

As we discussed last time, there is a remarkable level of scientific consensus on the reality and severity of human-caused global warming. However, most members of the public are unaware of this consensus – a topic which we will focus on in the next installment. Anyone with an Internet connection or a newspaper subscription will be able to tell you that many scientists think global warming is natural or nonexistent. As we know, these scientists are in the vast minority, but they have enjoyed widespread media coverage. Let’s look at three of the most prominent skeptics, and examine what they’re saying.

S. Fred Singer is an atmospheric physicist and retired environmental science professor. He has rarely published in scientific journals since the 1960s, but he is very visible in the media. In recent years, he has claimed that the Earth has been cooling since 1998 (in 2006), that the Earth is warming, but it is natural and unstoppable (in 2007), and that the warming is artificial and due to the urban heat island effect (in 2009).

Richard Lindzen, also an atmospheric physicist, is far more active in the scientific community than Singer. However, most of his publications, including the prestigious IPCC report to which he contributed, conclude that climate change is real and caused by humans. He has published two papers stating that climate change is not serious: a 2001 paper hypothesizing that clouds would provide a negative feedback to cancel out global warming, and a 2009 paper claiming that climate sensitivity (the amount of warming caused by a doubling of carbon dioxide) was very low. Both of these ideas were rebutted by the academic community, and Lindzen’s methodology criticized. Lindzen has even publicly retracted his 2001 cloud claim. Therefore, in his academic life, Lindzen appears to be a mainstream climate scientist – contributing to assessment reports, abandoning theories that are disproved, and publishing work that affirms the theory of anthropogenic climate change. However, when Lindzen talks to the media, his statements change. He has implied that the world is not warming by calling attention to the lack of warming in the Antarctic (in 2004) and the thickening of some parts of the Greenland ice sheet (in 2006), without explaining that both of these apparent contradictions are well understood by scientists and in no way disprove warming. He has also claimed that the observed warming is minimal and natural (in 2006).

Finally, Patrick Michaels is an ecological climatologist who occasionally publishes peer-reviewed studies, but none that support his more outlandish claims. In 2009 alone, Michaels said that the observed warming is below what computer models predicted, that natural variations in oceanic cycles such as El Niño explain most of the warming, and that human activity explains most of the warming but it’s nothing to worry about because technology will save us (cached copy, as the original was taken down).

While examining these arguments from skeptical scientists, something quickly becomes apparent: many of the arguments are contradictory. For example, how can the world be cooling if it is also warming naturally? Not only do the skeptics as a group seem unable to agree on a consistent explanation, some of the individuals either change their mind every year or believe two contradictory theories at the same time. Additionally, none of these arguments are supported by the peer-reviewed literature. They are all elementary misconceptions which were proven erroneous long ago. Multiple articles on this site could be devoted to rebutting such claims, but easy-to-read rebuttals for virtually every objection to human-caused climate change are already available on Skeptical Science. Here is a list of rebuttals relevant to the claims of Singer, Lindzen and Michaels:

With a little bit of research, the claims of these skeptics quickly fall apart. It does not seem possible that they are attempting to further our knowledge of science, as their arguments are so weak and inconsistent, and rarely published in scientific venues. However, their pattern of arguments does work as a media strategy, as most people will trust what a scientist says in the newspaper, and not research his reputation or remember his name. Over time, the public will start to remember dozens of so-called problems with the anthropogenic climate change theory.

Read Full Post »

Part 2 of a series of 5 for NextGen Journal

We hear the phrase “climate change consensus” tossed around all the time. But what does that even mean? And does it actually exist?

In Part 1 we discussed the concept of a scientific consensus: overwhelming agreement (but rarely unanimity) among experts. Of course, such a consensus could be wrong, but it wouldn’t be very sensible for the public to ignore it or bet against it. If 19 out of 20 doctors said you needed surgery to save your life, would you sit in the hospital bed and argue about their motives?

When it comes to climate change, the consensus view can be summarized as follows:

  1. Human emissions of greenhouse gases, mainly from the burning of fossil fuels, are a significant force on the global climate.
  2. The expected warming from this force is beginning to show up.

Often, people will write these two points in opposite order: the Earth is warming, and it’s due to our actions. However, that’s not the order that scientists discovered them. The academic community realized the Earth was going to warm decades before that warming became clear. Flipping around these observations might imply “that the entirety of climate science is based upon a single correlation study”.

So, what do the scientists say? In fact, publishing climatologists – the most specialized and knowledgeable people there with regards to climate change – are almost unanimous in their position. 96.2% say the Earth is warming, and 97.4% say humans are causing climate change. It’s hard to know why the second figure is higher than the first – perhaps one scientist in the study thought the effects of our actions hadn’t shown up yet (i.e., point 1 but not point 2).

A year later, others built on this study. They had a larger sample of climate scientists, 97-98% of whom agreed with the consensus position. Additionally, those who agreed had higher academic credibility than those who disagreed: they had published more papers (“expertise”) and been cited more times (“prominence”).

However, it doesn’t really matter what a scientist says, as much as how they back it up. Having a Ph.D. doesn’t mean you get to stop supporting your claims. In the academic community, this is done in the peer reviewed literature.

In 2004, a random sample of almost 1000 scientific studies on climate change were examined. 75% of the studies explicitly supported the consensus position, while the remaining 25% didn’t mention it – for example, some papers wrote about climate change millions of years ago, so today’s climate wasn’t relevant. Incredibly, not a single one disagreed with the consensus.

This still doesn’t imply unanimity – remember, it was a random sample, not the entire literature. A very few dissenting studies do get published each year, but they are such a tiny fraction of the total papers that it’s not surprising that none showed up in a sample of one thousand. Additionally, these papers generally fail to stand up to further scrutiny – their methods are often heavily critiqued by the academic community. See, for example, Lindzen and Choi, 2009 and its response.

It’s clear that individual polls have limitations. They are restricted to a sample of scientists or papers, rather than the entire community. They don’t take into account which claims stood the test of time, and which were refuted. Luckily, the climate science community has another way to summarize the balance of evidence on global warming: the Intergovernmental Panel on Climate Change (IPCC). Since 1988, four assessment reports have been written by thousands of volunteer scientists worldwide. They examine the entire body of academic literature on climate change and create a summary, which is then painstakingly reviewed and scrutinized by others.

The latest report, published in 2007, is already quite out of date – due to the long review process, most of the data is from 2002 and earlier. However, it is still used by governments worldwide, so let’s look at some of its key findings:

  • “Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice and rising global average sea level.”
  • “Most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic GHG concentrations.”
  • “Anthropogenic warming over the last three decades has likely had a discernible influence at the global scale on observed changes in many physical and biological systems.”
  • “Altered frequencies and intensities of extreme weather, together with sea level rise, are expected to have mostly adverse effects on natural and human systems.”
  • “Anthropogenic warming could lead to some impacts that are abrupt or irreversible, depending upon the rate and magnitude of the climate change.”

The final place to look for scientific consensus is statements from scientific organizations, such as the National Academy of Sciences. Not a single scientific organization worldwide disputes the consensus view, and many have published statements explicitly supporting it. A full list is available here, but here are some samples:

Climate change and sustainable energy supply are crucial challenges for the future of humanity. It is essential that world leaders agree on the emission reductions needed to combat negative consequences of anthropogenic climate change[.]
-Thirteen national academies of science

It is certain that increased greenhouse gas emissions from the burning of fossil fuels and from land use change lead to a warming of climate, and it is very likely that these green house gases are the dominant cause of the global warming that has been taking place over the last 50 years.
-Royal Society (UK)

The scientific evidence is clear: global climate change caused by human activities is occurring now, and it is a growing threat to society.
-American Association for the Advancement of Science

[C]omprehensive scientific assessments of our current and potential future climates clearly indicate that climate change is real, largely attributable to emissions from human activities, and potentially a very serious problem.
-American Chemical Society

Emissions of greenhouse gases from human activities are changing the atmosphere in ways that affect the Earth’s climate…The evidence is incontrovertible: Global warming is occurring. If no mitigating actions are taken, significant disruptions in the Earth’s physical and ecological systems, social systems, security and human health are likely to occur. We must reduce emissions of greenhouse gases beginning now.
-American Physical Society

The Earth’s climate is now clearly out of balance and is warming. Many components of the climate system…are now changing at rates and in patterns that are not natural and are best explained by the increased atmospheric abundances of greenhouse gases and aerosols generated by human activity during the 20th century.
-American Geophysical Union

It’s clear that a scientific consensus on climate change does exist. Since unanimity is virtually impossible in science, agreement over climate change can’t get much stronger than it is already.

Could all of these scientists, papers, reports, and organizations be wrong? Of course – nobody is infallible. Could that 3% of dissenting scientists triumph like Galileo? It’s possible.

But how much are you willing to risk on that chance?

Read Full Post »

The Intergovernmental Panel on Climate Change (IPCC) reports are likely the most cited documents on the subject of global warming. The organization, established by the United Nations, doesn’t do any original research – it simply summarizes the massive amount of scientific literature on the topic. Their reports, written and reviewed by volunteer scientists, and published approximately every six years, are a “one-stop shop” for credible information about climate change. When you have a question about climate science, it’s far easier to find the relevant section of the IPCC than it is to wade through thousands of results on Google Scholar.

The main problem with the IPCC, in my opinion, is that their reports are out of date as soon as they’re published, and then everyone has to wait another six years or so for the next version, which is subsequently out of date, and so on. Additionally, because there are so many authors, reviewers, and stakeholders involved in the IPCC, the reports come to reflect the lowest-common-denominator scientific understanding, rather than the median opinion of experts. In particular, government officials oversee the writing and reviewing of the Summary for Policymakers, to make sure that it’s relevant and clear. However, some governments are beginning to abuse their power in this process. The late Stephen Schneider, in his 2009 book Science as a Contact Sport, recounts his experiences with government representatives who absolutely refuse to allow certain conclusions to be published in the IPCC, regardless of their scientific backing.

The result is that the IPCC reports frequently underestimate the severity of climate change. For example, in the most recent report, the worst-case estimate of sea level rise by the end of this century was 0.59 m. Since then, scientists have revised this estimate to 1.9 m, but it won’t show up in the report until the next edition comes out around 2014.

Another example concerns Arctic sea ice: the worst-case scenario from the IPCC was an ice-free Arctic in the summer beginning around 2100. These estimates have come down so rapidly that there’s an outside chance the summer sea ice could be gone before the next IPCC report has a chance to correct it (presentation by Dr. David Barber, media coverage available here). It will more likely disappear around 2035, but that’s still a drastic change from what the IPCC said.

Despite this conservative stance, there are still some who think the IPCC is alarmist (this is usually paired with something about a New World Order and/or socialists using a carbon tax to take over the world). Naturally, the IPCC has become a favourite target of climate change deniers, who wish to obscure the reality of human-caused global warming. Last year, they claimed to have found all kinds of errors in the latest report, somehow proving that global warming wasn’t happening. In fact, most of these so-called “errors” were nothing of the sort, and the worst of the two real mistakes in the report involved a typo regarding which year certain glaicers were expected to disappear. Not bad, for a three-thousand-page document, but it created quite the media firestorm. Apparently scientists are expected to have 100% accuracy at all times, or else they are frauds.

Just a few weeks ago, the IPCC made some changes to their policies in response to these events. Their press release about the new policies featured the phrase “Boost Quality, Transparency and Rigour” in the title.

No, no, no. That’s not what the IPCC needs. These are very admirable goals, but they’re doing just fine as it is. Actions to “further minimize any possibility of errors in future reports” should not be their top priority. Further extending the review process will only further delay the publication of each report (making them even more out of date) and further enhance their lowest-common-denominator position. When you have an error rate on the order of 0.67 errors/1000 pages, should you spend your energy getting that all the way down to zero (a virtually impossible task) or on the real issues that need to be addressed?

I think the IPCC should adopt a continually-updating online version of their report. This would solve their chronic problem of being out of date, as well as help the organization adapt to the increasing role of the Internet in our world. Any future errors the deniers liked to yell about would be fixed immediately. Governments would be forming policies based on the best available evidence from today, not a decade ago. Everything would still be in one place, and version control would allow transparency to remain high.

The IPCC should also make it more clear when their estimates are too conservative. When a single sentence that didn’t even make it into the summary is shown to overestimate the problem, the climate science community ties itself up in knots trying to correct its tattered image. But prominent conclusions that underestimate the problem go unacknowledged for decades. If it were the other way around, can you imagine the field day deniers would have?

Luckily, the changes made to IPCC policy are not all aimed at appeasing the bullies. A long-overdue communications plan is in development: a rapid response team and Senior Communications Manager will develop formal strategies for public education and outreach. Hopefully, this will counteract the false claims and defamation the IPCC has been subject to since its creation.

Another new plan is to create an Executive Committee, composed of the Chair, Vice Chairs, Working Group Co-Chairs, and advisory members. This will “strengthen coordination and management of the IPCC” and allow for actions to be taken between reports, such as communication and responding to possible errors. A more structured administration will probably be helpful, given that the only people in the organization currently getting paid for their work are the office staff (even the Chair doesn’t make a cent). Coordinating overworked scientists who volunteer for a scientific undertaking that demands 100% accuracy can’t be an easy task.

Will the IPCC continue to be the best available source of credible information on climate change? Will its structure of endless review remain feasible in a world dominated by instant news? Should we continue to grant our governments control over the contents of scientific reports concerning an issue that they desperately want to avoid? Should we continue to play to the wants and needs of bullies? Or should we let scientists speak for themselves?

Read Full Post »

Older Posts »

Follow

Get every new post delivered to your Inbox.

Join 345 other followers