Posts Tagged ‘CFCs’

Today’s edition of Nature included an alarming paper, indicating record ozone loss in the Arctic due to an unusually long period of cold temperatures in the lower stratosphere.

On the same day, coverage of the story by the Canadian Press included a fundamental error that is already contributing to public confusion about the reality of climate change.

Counter-intuitively, while global warming causes temperatures in the troposphere (the lowest layer of the atmosphere) to rise, it causes temperatures in the stratosphere (the next layer up), as well as every layer above that, to fall. The exact mechanics are complex, but the pattern of a warming troposphere and a cooling stratosphere has been both predicted and observed.

This pattern was observed in the Arctic this year. As the Nature paper mentions, the stratosphere was unusually cold in early 2011. The surface temperatures, however, were unusually warm, as data from NASA shows:

Mar-May 2011

Dec-Feb 2011

While we can’t know for sure whether or not the unusual stratospheric conditions were caused by climate change, this chain of cause and effect is entirely consistent with what we can expect in a warming world.

However, if all you read was an article by the Canadian Press, you could be forgiven for thinking differently.

The article states that the ozone loss was “caused by an unusually prolonged period of extremely low temperatures.” I’m going to assume that means surface temperatures, because nothing else is specified – and virtually every member of the public would assume that too. As we saw from the NASA maps, though, cold surface temperatures couldn’t be further from the truth.

The headline, which was probably written by the Winnipeg Free Press, rather than the Canadian Press, tops off the glaring misconception nicely:

Record Ozone loss over the Arctic caused by extremely cold weather: scientists

No, no, no. Weather happens in the troposphere, not the stratosphere. While the stratosphere was extremely cold, the troposphere certainly was not. It appears that the reporters assumed the word “stratosphere” in the paper’s abstract was completely unimportant. In fact, it changes the meaning of the story entirely.

The reaction to this article, as seen in the comments section, is predictable:

So with global warming our winters are colder?

First it’s global warming that is destroying Earth, now it’s being too cold?! I’m starting to think these guys know as much about this as weather guys know about forecasting the weather!

Al gore the biggest con man since the beginning of mankind!! This guys holdings leave a bigger carbon footprint than most small countries!!

I’m confused. I thought the north was getting warmer and that’s why the polar bears are roaming around Churchill looking for food. There isn’t ice for them to go fishing.

People are already confused, and deniers are already using this journalistic error as evidence that global warming is fake. All because a major science story was written by a general reporter who didn’t understand the study they were covering.

In Manitoba, high school students learn about the different layers of the atmosphere in the mandatory grade 10 science course. Now, reporters who can’t recall this information are writing science stories for the Canadian Press.


Read Full Post »

“Global warming…doesn’t that have something to do with the ozone?” Well, no. Environmental issues are not all the same. It’s common for people to confuse climate change and ozone depletion, but they are separate issues – although they are indirectly connected in some interesting ways.

Ozone, which is made of three oxygen atoms stuck together (instead of two, which is what normal oxygen gas is made of), is vital to life on Earth. It forms a layer in the stratosphere, the second layer up in the atmosphere, that is very good at absorbing ultraviolet (UV) radiation from the Sun. UV radiation severely damages organisms if enough of it reaches the surface. The 3% or less that gets through the ozone already gives us sunburns and skin cancer, so you can imagine what the situation would be like if the ozone layer wasn’t there at all.

In the middle of the 20th century, synthetic gases known as chlorofluorocarbons (CFCs) became popular for use in refrigerators and aerosol products, among other applications. They were non-toxic, and did not react easily with other substances, so they were used widely. However, their chemical stability allowed them to last long enough to drift into the stratosphere after they were emitted.

Once in the stratosphere, the CFCs were exposed to UV radiation, which was able to break them down. Free chlorine atoms (Cl) were liberated, a substance that is very reactive indeed. In fact, Cl acts as a catalyst in the decomposition of ozone, allowing two ozone molecules to become three oxygen molecules, losing their UV absorbing power in the process. Since catalysts are not used up in a reaction, the same Cl radical can continue to destroy ozone until it reacts with something else in the atmosphere and is removed.

Over the poles, the stratosphere is cold enough for polar stratospheric clouds (PSCs) to form. These PSCs provided optimum conditions for the most reactive chlorine gas of all to form: ClO (chlorine monoxide). Now there wasn’t just a catalytic cycle of free Cl radicals depleting the ozone, there was also a cycle of ClO. It turns out that Antarctica was more favourable for ozone depletion than the Arctic, both because its temperatures were lower and because its system of wind currents prevented the ozone-depleting substances from drifting out of the area.

Before long, there was a hole in the ozone layer over Antarctica (due to the PSCs), and concentrations were declining in other locations too (due to the basic Cl reactions). The issue became a frontier for scientific research, and scientists Crutzen, Rowland, and Molina won the 1995 Nobel Prize in Chemistry for their work with atmospheric ozone.

In 1987, politicians worldwide decided to ban CFCs under the Montreal Protocol. This movement was largely successful, and the use of CFCs has become nearly negligible, especially in developed nations. They have been replaced with gases that safely decompose before they reach the stratosphere, so they don’t interfere with ozone. The regulations are working: the ozone hole in Antarctica has stabilized, and global stratospheric ozone concentrations have been on the rise since 1993.

In contrast, climate change is a product of greenhouse gases such as carbon dioxide. Unlike CFCs, most of them are not synthetic, and they are released from the burning of fossil fuels (coal, oil, and natural gas), not specific products such as refrigerators. Rather than destroying a natural process, like CFCs do, they strengthen one to the point of harm: the greenhouse effect. This phenomenon, which traps heat in the atmosphere, is absolutely vital, as the Earth would be too cold to support life without it. Increasing the concentrations of greenhouse gases with fossil fuels becomes too much of a good thing, though, as the greenhouse effect traps more heat, warming the planet up.

Just a few degrees Celsius of warming can cause major problems, as agricultural zones, wind and ocean currents, and precipitation patterns shift. The sea level rises, submerging coastal cities. Many species go extinct, as the climate changes faster than they can adapt. Basically, the definition of “normal” in which our civilization has developed and thrived is changing, and we can’t count on that stability any more.

Unlike the Montreal Protocol, efforts to reduce greenhouse gas emissions have more or less failed. Fossil fuels permeate every part of our lives, and until we shift the economy to run on clean energy instead, convincing governments to commit to reductions will be difficult at best. It remains to be seen whether or not we can successfully address this problem, like we did with ozone depletion.

Although these two issues are separate, they have some interesting connections. For example, PSCs form in cold areas of the stratosphere. That’s why the ozone hole is over Antarctica, and not somewhere else. Unfortunately, global warming is, paradoxically, cooling the stratosphere, as a stronger greenhouse effect means that less heat reaches the stratosphere. Therefore, as climate change progresses, it will make it easier for the ozone depletion reactions to occur, even though there are fewer CFCs.

Additionally, CFCs are very strong greenhouse gases, but their use has drastically reduced so their radiative effects are of lesser concern to us. However, some of their replacements, HFCs, are greenhouse gases of similar strength. They don’t deplete the ozone, but, per molecule, they can be thousands of times stronger than carbon dioxide at trapping heat. Currently, their atmospheric concentrations are low enough that they contribute far less forcing than carbon dioxide, but it wouldn’t take a large increase in HFCs to put us in a bad situation, simply because they are so potent.

Finally, these two issues are similar in that ozone depletion provides a smaller-scale analogue for the kinds of political and economic changes we will have to make to address climate change:

  1. Unintended chemical side effects of our economy posed a serious threat to all species, including our own.
  2. Industry representatives and free-market fundamentalists fought tooth and nail against conclusive scientific findings, and the public became bewildered in a sea of misinformation.
  3. Governments worked together to find sensible alternatives and more or less solved the problem.

We’ve already seen the first two events happen with climate change. Will we see the third as well?

Read Full Post »