My Research with Steve

Almost four years ago I took a job as a summer student of Dr. Steve Easterbrook, in the software engineering lab of the University of Toronto. This was my first time taking part in research, but also my first time living away from home and my first time using a Unix terminal (both of which are challenging, but immensely rewarding, life skills).

While working with Steve I discovered that climate model output is really pretty (an opinion which hasn’t changed in the four years since) and that climate models are really hard to install (that hasn’t changed either).

At Steve’s suggestion I got a hold of the code for various climate models and started to pick it apart. By the end of the summer I had created a series of standardised diagrams showing the software architecture of each model.

These diagrams proved to be really useful communication tools: we presented our work at AGU the following December, and at NCAR about a year after that, to very positive feedback. Many climate modellers we met at these conferences were pleased to have a software diagram of the model they used (which is very useful to show during presentations), but they were generally more interested in the diagrams for other models, to see how other research groups used different software structures to solve the same problems. “I had no idea they did it like that,” was a remark I heard more than a few times.

Between my undergrad and PhD, I went back to Toronto for a month where I analysed the model code more rigorously. We made a new set of diagrams which was more accurate: the code was sorted into components based on dependency structure, and the area of each component in a given diagram was exactly proportional to the line count of its source code.

Here is the diagram we made for the GFDL-ESM2M model, which is developed at the Geophysical Fluid Dynamics Laboratory in Princeton:

We wrote this all up into a paper, submitted it to GMD, and after several months and several rounds of revision it was published just yesterday! The paper is open access, and can be downloaded for free here. It’s my first paper as lead author which is pretty exciting.

I could go on about all the interesting things we discovered while comparing the diagrams, but that’s all in the paper. Instead I wanted to talk about what’s not in the paper: the story of the long and winding journey we took to get there, from my first day as a nervous summer student in Toronto to the final publication yesterday. These are the stories you don’t read about in scientific papers, which out of necessity detail the methodology as if the authors knew exactly where they were going and got there using the shortest possible path. Science doesn’t often work like that. Science is about messing around and exploring and getting a bit lost and eventually figuring it out and feeling like a superhero when you do. And then writing it up as if it was easy.

I also wanted to express my gratitude to Steve, who has been an amazing source of support, advice, conversations, book recommendations, introductions to scientists, and career advice. I’m so happy that I got to be your student. See you before long on one continent or another!

Two Great TED Talks

Both are about climate modelling, and both are definitely worth 10-20 minutes of your time.

The first is from Gavin Schmidt, NASA climate modeller and RealClimate author extraordinaire:

The second is from Steve Easterbrook, my current supervisor at the University of Toronto (this one is actually TEDxUofT, which is independent from TED):

What I am doing with my life

After a long hiatus – much longer than I like to think about or admit to – I am finally back. I just finished the last semester of my undergraduate degree, which was by far the busiest few months I’ve ever experienced.

This was largely due to my honours thesis, on which I spent probably three times more effort than was warranted. I built a (not very good, but still interesting) model of ocean circulation and implemented it in Python. It turns out that (surprise, surprise) it’s really hard to get a numerical solution to the Navier-Stokes equations to converge. I now have an enormous amount of respect for ocean models like MOM, POP, and NEMO, which are extremely realistic as well as extremely stable. I also feel like I know the physics governing ocean circulation inside out, which will definitely be useful going forward.

Convocation is not until early June, so I am spending the month of May back in Toronto working with Steve Easterbrook. We are finally finishing up our project on the software architecture of climate models, and writing it up into a paper which we hope to submit early this summer. It’s great to be back in Toronto, and to have a chance to revisit all of the interesting places I found the first time around.

In August I will be returning to Australia to begin a PhD in Climate Science at the University of New South Wales, with Katrin Meissner and Matthew England as my supervisors. I am so, so excited about this. It was a big decision to make but ultimately I’m confident it was the right one, and I can’t wait to see what adventures Australia will bring.