Unknown's avatar

About climatesight

Kaitlin Naughten is an ocean-ice modeller at the British Antarctic Survey in Cambridge.

Climate Scientists Out in the Cold

Cross-posted from NextGen Journal

In the current economy, it’s not surprising that many countries are reducing funds for scientific research. It’s necessary to cut spending across the board these days. However, North American governments are singling out climate science as a victim – and not just reducing its funding, but, in many cases, eliminating it altogether.

Climate change research is largely supported by government money, as there aren’t many industries that recognize a vested interest in the science. Pharmaceutical companies often fund biomedical researchers, and mining companies fund geologists, but there’s no real analogue for climate scientists. Additionally, many global warming studies are particularly expensive. For example, transporting researchers and equipment to the North Pole via helicopter, and building climate models on supercomputers that stretch the limits of our data storage capacities, cost quite a bit more than injecting rats with chemicals in a lab.

In Canada, where I live, the federal government recognized these unique characteristics of climate science, and, in 2000, set up a special foundation to fund research in the field: the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS). Over the past decade, it has spent $118 million supporting most of Canada’s university-based climate research, and it was assumed that it would be continually renewed as the country established itself as a leader in the field.

However, since the Conservative Party formed a minority government almost five years ago, it has only extended the foundation’s lifespan by a year, and refuses to consider long-term funding commitments. The CFCAS only has a few months left before it will run out of money and close its doors. Many of Canada’s premier climate research projects and laboratories will have to shut down as a result, as they have always relied on CFCAS, and general federal funds such as the National Science and Engineering Research Council (NSERC) simply won’t be able to fill the gap. Some researchers are leaving the country to pursue more fertile academic ground, and as an aspiring climate scientist, I am wondering whether I will have to eventually do so as well.

If it seems cruel to abandon funding for researching the greatest threat to our future, rather than simply reducing its budget until the economy recovers, take a stroll south to what my sociology professor likes to refer to as “that wild society”. The U.S. House of Representatives is becoming dominated by politicians who hate the idea of government, and wish to tear most of it down in anger. Add to that mindset a staunch denial of climate science, and you can see where this is going.

The House of Representatives just passed a bill that not only prevents the Environmental Protection Agency from regulating greenhouse gases that cause climate change, but also repeals a great deal of clean air and water protection. Other cornerstones of the bill include repealing the new American health care system and cutting off funding of Planned Parenthood.

Since not a single Democrat Member of Congress voted for this bill, it is unlikely to pass the Senate, where Democrats hold a majority. However, Republicans have threatened to take away all federal funding, effectively shutting down the entire U.S. government, if the bill is not passed into law.

An amendment to this bill, which also passed the House of Representatives, completely cuts off federal funding to the Intergovernmental Panel on Climate Change (IPCC). The IPCC, a scientific organization of the United Nations, doesn’t do any original research, but writes extensive summary reports of the academic literature on climate change. It’s hard to overestimate how important these reports, published every few years, are to governments, scientists, and citizens alike. Instead of having to dig through thousands of scientific journals and articles, with no idea where to start, people can simply read these reports to find out what science knows about climate change. They are painstakingly reviewed, are offered in several levels of technicality, and include carefully organized references to the multitude of studies whose conclusions contributed to the text. For a field of research that is quickly expanding, these reports are absolutely vital, and it’s hard to imagine how they could carry on without support from the American government.

Blaine Luetkemeyer, the Republican Member of Congress that proposed the amendment, justified cutting off the IPCC by asserting the oft-debunked, but disturbingly popular, meme that climate science is some kind of worldwide conspiracy. If the IPCC really is “corrupt” and “nefarious”, as Luetkemeyer claims, then why can’t they afford to pay any of the scientists that write the reports – not even the IPCC president? Why do they allow anyone to help review the draft reports? Why do they permit their Summary for Policymakers to be watered down by policymakers? And, most importantly, why is climate change progressing faster than the IPCC expected?

We shouldn’t have to spend time addressing paranoid conspiracy theories like Luetkemeyer’s . Sadly, the government of the most powerful country on Earth is being taken over by people who buy into these conspiracy theories, and who want to punish climate scientists as much as possible for crimes they haven’t committed. Countries like Canada, even if they refrain from public accusations, are following suit in their actions.

“It’s quite clear by their actions [with CFCAS] and its lack of funding that [the Canadian government is] basically saying ‘We don’t want your science any more’,” Andrew Weaver, Canada’s top climatologist, told the Globe and Mail.

“[Cutting off the IPCC] is like putting our heads in the sand, denying the science, and then stopping the scientists from working – because they might come to a different conclusion from the Republican Party’s ideology,” Democrat Member of Congress Henry Waxman argued.

Is this really a wise move?

Extinction and Climate

Life on Earth does not enjoy change, and climate change is something it likes least of all. Every aspect of an organism’s life depends on climate, so if that variable changes, everything else changes too – the availability of food and water, the timing of migration or hibernation, even the ability of bodily systems to keep running.

Species can adapt to gradual changes in their environment through evolution, but climate change often moves too quickly for them to do so. It’s not the absolute temperature, then, but the rate of change that matters. Woolly mammoths and saber-toothed tigers thrived during the Ice Ages, but if the world were to shift back to that climate overnight, we would be in trouble.

Put simply, if climate change is large enough, quick enough, and on a global scale, it can be the perfect ingredient for a mass extinction. This is worrying, as we are currently at the crux of a potentially devastating period of global warming, one that we are causing. Will our actions cause a mass extinction a few centuries down the line? We can’t tell the future of evolution, but we can look at the past for reference points.

There have been five major extinction events in the Earth’s history, which biologists refer to as “The Big Five”. The Ordovician-Silurian, Late Devonian, Permian-Triassic, Late Triassic, Cretaceous-Tertiary…they’re a bit of a mouthful, but all five happened before humans were around, and all five are associated with climate change. Let’s look at a few examples.

The most recent extinction event, the Cretaceous-Tertiary (K-T) extinction, is also the most well-known and extensively studied: it’s the event that killed the dinosaurs. Scientists are quite sure that the trigger for this extinction was an asteroid that crashed into the planet, leaving a crater near the present-day Yucatan Peninsula of Mexico. Devastation at the site would have been massive, but it was the indirect, climatic effects of the impact that killed species across the globe. Most prominently, dust and aerosols kicked up by the asteroid became trapped in the atmosphere, blocking and reflecting sunlight. As well as causing a dramatic, short-term cooling, the lack of sunlight reaching the Earth inhibited photosynthesis, so many plant species became extinct. This effect was carried up the food chain, as first herbivorous, then carnivorous, species became extinct. Dinosaurs, the dominant life form during the Cretaceous Period, completely died out, while insects, early mammals, and bird-like reptiles survived, as their small size and scavenging habits made it easier to find food.

However, life on Earth has been through worse than this apocalyptic scenario. The
largest extinction in the Earth’s history, the Permian-Triassic extinction, occurred about 250 million years ago, right before the time of the dinosaurs. Up to 95% of all species on Earth were killed in this event, and life in the oceans was particularly hard-hit. It took 100 million years for the remaining species to recover from this extinction, nicknamed “The Great Dying”, and we are very lucky that life recovered at all.

So what caused the Permian-Triassic extinction? After the discovery of the K-T crater, many scientists assumed that impact events were a prerequisite for extinctions, but that probably isn’t the case. We can’t rule out the possibility that an asteroid aggravated existing conditions at the end of the Permian period. However, over the past few years, scientists have pieced together a plausible explanation for the Great Dying. It points to a trigger that is quite disturbing, given our current situation – global warming from greenhouse gases.

In the late Permian, a huge expanse of active volcanoes existed in what is now Siberia. They covered 4 million square kilometres, which is fifteen times the area of modern-day Britain (White, 2002). Over the years, these volcanoes pumped out massive quantities of carbon dioxide, increasing the average temperature of the planet. However, as the warming continued, a positive feedback kicked in: ice and permafrost melted, releasing methane that was previously safely frozen in. Methane is a far stronger greenhouse gas than carbon dioxide – over 100 years, it traps approximately 21 times more heat per molecule (IPCC AR4). Consequently, the warming became much more severe.

When the planet warms a lot in a relatively short period of time, a particularly nasty condition can develop in the oceans, known as anoxia. Since the polar regions warm more than the equator, the temperature difference between latitudes decreases. As global ocean circulation is driven by this temperature difference, ocean currents weaken significantly and the water becomes relatively stagnant. Without ocean turnover, oxygen doesn’t get mixed in – and it doesn’t help that warmer water can hold less oxygen to begin with. As a result of this oxygen depletion, bacteria in the ocean begins to produce hydrogen sulfide (H2S). That’s what makes rotten eggs smell bad, and it’s actually poisonous in large enough quantities. So if an organism wasn’t killed off by abrupt global warming, and was able to survive without much oxygen in the ocean (or didn’t live in the ocean at all), it would probably soon be poisoned by the hydrogen sulfide being formed in the oceans and eventually released into the atmosphere.

The Permian-Triassic extinction wasn’t the only time anoxia developed. It may have been a factor in the Late Triassic extinction, as well as smaller extinctions between the Big Five. Overall, it’s one reason why a warm planet tends to be less favourable to life than a cold one, as a 2008 study in the UK showed. The researchers examined 520 million years of data on fossils and temperature reconstructions, which encompasses almost the entire history of multicellular life on Earth. They found that high global temperatures were correlated with low levels of biodiversity (the number of species on Earth) and high levels of extinction, while cooler periods enjoyed high biodiversity and low extinction.

Our current situation is looking worse by the minute. Not only is the climate changing, but it’s changing in the direction which could be the least favourable to life. We don’t have volcanic activity anywhere near the scale of the Siberian Traps, but we have a source of carbon dioxide that could be just as bad: ourselves. And worst of all, we could prevent much of the coming damage if we wanted to, but political will is disturbingly low.

How bad will it get? Only time, and our decisions, will tell. A significant number of the world’s species will probably become extinct. It’s conceivable that we could cause anoxia in the oceans, if we are both irresponsible and unlucky. It wouldn’t be too hard to melt most of the world’s ice, committing ourselves to an eventual sea level rise in the tens of metres. These long-range consequences would take centuries to develop, so none of us has to worry about experiencing them. Instead, they would fall to those who come after us, who would have had no part in causing – and failing to solve – the problem.

References:

Mayhew et al (2008). A long-term association between global temperature and biodiversity, origination and extinction in the fossil record. Proceedings of the Royal Society: Biological Sciences, 275: 47-53. Read online

Twitchett (2006). The paleoclimatology, paleoecology, and paleoenvironmental analysis of mass extinction events. Paleogeography, Paleoclimatology, Paleoecology, 234(2-4): 190-213. Read online

White (2002). Earth’s biggest “whodunnit”: unravelling the clues in the case of the end-Permian mass extinction. Philosophical Transactions of the Royal Society: Mathematical, Physical, & Engineering Sciences, 360: 2963-2985. Read online

Benton and Twitchett (2003). How to kill (almost) all life: the end-Permian extinction event. Trends in Ecology & Evolution, 18(7): 358-365. Read online

Harmony: a New Way of Looking at our World

Even if you don’t have any intention of reading the new book by Prince Charles of Wales, it’s almost worth buying a copy just to admire it. Harmony: a New Way of Looking at our World is beautifully bound, with thick, glossy pages full of photographs that take you on a visual journey of the natural and architectural wonders of the world. Some, like the two-page spread of a humpback whale breaching, are joyful; others, such as the carcass of a young albatross, its digestive tract stuffed with plastic debris, are distressing.

The actual contents of the book were unique, but compelling. Rather than focusing on a particular issue and discussing it in depth, Prince Charles swept through just about every discipline you’d find in a modern university – agriculture, anthropology, architecture, art…and that’s only the A’s. This broad approach could easily have fallen into confusing disconnect, but he managed to connect each subject with what he referred to as a “golden thread”: a philosophical principle emphasizing the importance of following patterns seen in nature, and not trying to overwhelm or conquer it.

This approach is not really a “new way of looking at the world”, as the subtitle proclaims – in fact, it predates the dominant practice of Western society. For example, among indigenous civilizations that have modestly endured for many thousands of years, “not one…considers itself to be a master of creation”. Compare that to today’s industrialized society, which is only a few centuries old, and already views nature as a huge machine composed of independent parts which we can tweak at our will, rather than as a complex, dynamic system.

Prince Charles makes both emotional and scientific arguments to support his message, but he emphasizes the emotional ones first. I found this framing to be a turnoff, especially in the first chapter, which began, “This is a call to revolution. The Earth…is losing its balance and we humans are causing this to happen,” and continued from there. I couldn’t really take this narrative seriously, as I hadn’t yet heard his rational arguments, so the opening seemed far too dramatized. Perhaps others will find the initial appeals to emotion more effective than graphs and citations, but I was not impressed by them.

The meat of the book, however, was far better. Prince Charles explored a wide array of fascinating subjects that never managed to bore me. From the mathematical relationships found in the biosphere, to the importance of agricultural crop diversity in a changing climate, to the fascinating stream of engineering known as biomimicry, to the history of Islamic architecture…they may seem unrelated, but in fact all lead back to the importance of sustainability, in every sense of the word, and the incredible wisdom and beauty that can be found in nature.

The major flaw of Harmony, in my opinion, was the frequency of Prince Charles’ self-promotion. It seemed like nearly every second page contained a sentence similar to “(this particular problem) is very significant…and that is why I decided to start (some charity) to address it.” I think it’s wonderful that such a powerful and prolific figure is supporting projects for sustainability, but a better approach would have been to include an appendix of his charities at the end of the book. That way, the writing would have been less about him, and more about what he had to say.

There were also some obvious errors in the book, more serious than simple typos. 22 does not follow 13 in the Fibonacci Sequence, and the tilt of the Earth’s axis is not 24.5º (at least not at present). I expect these errors will be fixed in future editions.

The text’s discussion of climate change was fairly standard – think Al Gore’s slideshow, condensed into a few pages – but nonetheless very accurate and effective. There were some brief forays into paleoclimate which I enjoyed, too. Climate change was not the focus of this book, it was instead presented as a piece of a larger picture, but I appreciated the clarity with which it was addressed.

Although the scientific side of my mind is hyper-vigilant when I read nonfiction, I can relate to the deep affinity and spirituality people feel for the natural world. Nothing builds a sense of kinship like being out in the wilderness and recognizing how much smarter other species can be, in their own ways, than human beings. Nothing feels quite as healing as the quiet awe that strikes when a deer steps out onto the path ahead, or the joy and laughter that inevitably follow from watching songbirds. Nothing builds acceptance of the phenomenon of death like witnessing its omnipresence and necessity in any functioning ecosystem.

We could fill libraries with the economic, scientific, and health benefits of preserving nature in all its integrity. When it comes down to it, though, nature keeps us sane in the crazy world we have created for ourselves, and these emotional reasons are just as strong, if not stronger.

The Pendulum

Cross-posted from NextGen Journal

A few years ago, climate change mitigation became a major political issue. Before 2005, governments certainly knew that human-caused climate change was a serious problem – but the public knew next to nothing about it, so there was no incentive to act. However, between 2005 and 2007, a perfect storm of events splashed the reality of climate change onto the world stage.

The Kyoto Protocol, an international agreement to reduce greenhouse gas emissions, finally came into force in early 2005, after years of negotiation. The United States refused to sign, and Australia signed on a little late, but every other developed nation in the world agreed to emission targets. Here in Canada, the Liberal government enthusiastically pledged its support for Kyoto. My local newspaper ran editorials exploring the different ways we could meet our targets, through combinations of clean energy, green infrastructure, and efficiency standards.

The summer of 2005 was a wake-up call for the United States, as Hurricane Katrina mercilessly demonstrated the amount of damage that extreme weather can bring. It’s impossible to say, at least with our current technology, whether or not Katrina was caused or even worsened by a warming planet. However, such devastating storms will become the norm as climate change progresses. Scientists aren’t sure whether or not hurricanes will become more frequent in a warming world, but the average hurricane is expected to become stronger and more damaging, and we are already beginning to see this rise in storm intensity. Katrina gave us an example of what we can expect from climate change – even if it wasn’t a direct effect in itself – and the world was shocked by the suffering that ensued.

2006 marked the release of An Inconvenient Truth, Al Gore’s Academy Award-winning documentary about climate change. For scientists studying climate, the film was an admirable, up-to-date example of science communication, albeit with a few minor errors and oversimplifications. However, for citizens new to the issue (I particularly remember my classmates in grade 9 social studies discussing the film), An Inconvenient Truth was a disturbing reality check – scarier than any horror movie, because it was real.

The major scientific event of 2007 was a drastic, unexpected drop in Arctic summer sea ice. That season’s melt was exacerbated by coincidental weather conditions, so the next years weren’t quite as bad, but the trend was still worrying, to say the least. The research community had assumed that summer ice would stick around for at least a century, but this timescale was soon halved and quartered as ice melt exceeded even the worst projections.

By 2007, lead-up to the 2008 US presidential election was underway, and political awareness of climate change was obvious. It was no surprise that Democrat Barack Obama had ambitious plans to cut greenhouse gas emissions, but even the Republicans seemed to be on board. During his time in office, George W. Bush had insisted that, since climate change could be natural, any mitigating action was not worth the economic risk. Republican presidential candidates seemed to realize that continuing to adopt this attitude would be political suicide. The most extreme example, John McCain, who would eventually win the Republican presidential nomination, had emissions targets only slightly less extensive than Obama’s. As he said in 2007,

The world is already feeling the powerful effects of global warming, and far more dire consequences are predicted if we let the growing deluge of greenhouse gas emissions continue, and wreak havoc with God’s creation…The problem isn’t a Hollywood invention nor is doing something about it a vanity of Cassandra like hysterics. It is a serious and urgent economic, environmental and national security challenge.

However, McCain, once an author of a bill designed to cut greenhouse gas emissions, would soon completely change his stance. By 2010, he was asserting that cap-and-trade legislation was unnecessary and carbon dioxide posed no harm to the American people. He even went so far as to question the political motivations of science he once wholly accepted:

I think [global warming is] an inexact science, and there has been more and more questioning about some of the conclusions that were reached concerning climate change. And I believe that everybody in the world deserves correct answers whether the scientific conclusions were flawed by outside influences. There’s great questions about it that need to be resolved.

The story of John McCain isn’t too surprising. Politicians frequently base their statements on public sentiment rather than personal opinion. They say what people want to hear, rather than what they truly believe is important. This aspect of our political system is depressing, but persistent. The real question, though, regards what changed public sentiment so quickly. Why did politicians like McCain feel compelled to denounce the importance of action on this problem, or even the existence of the problem itself? What happened since 2007 that made the pendulum swing so far in the other direction?

Strike one was the economy. The global recession that began in 2008 was the largest since the Great Depression, and concern for all other problems promptly went down the drain. It’s understandable for citizens to not worry about the environment when they don’t even have the means to feed and clothe their children properly. However, for governments to not realize the long-term economic implications of allowing climate change to continue, along with the potential job-creating benefits of a new energy economy, was disappointing, even though it wasn’t surprising.

Strike two was the all-out war on climate science, spearheaded by the fossil fuel industry and the far right. This PR campaign has been underway since the early 1990s, but was kicked up a notch just over a year ago. Since public understanding of the causes and effects of global warming was growing, and the science was becoming more solid by the month, the PR tactics changed. Instead of attacking the science, they attacked the integrity of the scientists. The most extreme example occurred in November 2009, when private correspondence between top climate researchers was stolen, spread on the Internet, and spun in an attempt to cast doubt on the scientists’ motives. This event, known as “Climategate”, spurred a great deal of anger among the political right, and everything from bitter editorials to death threats against scientists ensued. Perhaps most distressingly, by the time investigations found that the scientists involved were innocent, and the reality of climate change untouched, Climategate was old news and media outlets failed to adequately follow up on the story. Citizens heard the accusations, but not the exonerations, so political will to cut greenhouse gas emissions slipped even further.

Strike three – well, there has been no strike three, and a good thing too. Strikes one and two were so bad that some are hoping the pendulum has swung as far as it can go. It’s certainly difficult to imagine how the situation could get worse. The Kyoto Protocol is set to expire next year, and the Copenhagen meetings failed to create a replacement. As it was, many developed nations failed to meet their targets, and the Canadian government backed out completely.

The possibility of federal climate legislation for the United States is laughable now that not a single Republican Senator thinks action is necessary, and most doubt the reality of the problem, choosing to believe that the entire scientific community is out to lunch and/or an agent of conspiracy. President Obama’s director of climate policy, Carol Browner, recently left her position, although none of her major goals had been met. Obama’s recent State of the Union address included lots of hopeful statements about clean energy, but absolutely no mention of climate change, as if merely acknowledging the most pressing reason for a new energy economy would be political suicide. The time-honoured tradition of saying what the public wants to hear has even reached Obama, the man who promised change.

In Canada, legislation to simply set targets for emission reduction passed the House of Commons (made of elected representatives), but the Senate (composed of appointed politicians) chose to use their newfound Conservative majority to strike down the bill with no debate whatsoever, in a blatantly undemocratic move that has not happened since the 1930s. The Canadian government is all for a new energy economy, but not one based on environmental and social responsibility. The Alberta tar sands, which are substantially more polluting and carbon-intensive than traditional oil, continue to expand, and both federal and provincial governments are worryingly enthusiastic.

From 2005 to 2007, politics was high on promises of mitigation, but low on delivery. Since then, it has been devoid of both. It’s starting to seem as if it will take a major global disaster that can be unquestionably tied to climate change for governments to get their act together.

This would all be very well if there was no lag time between cause and effect in the climate system, but it doesn’t work that way. It takes several decades for all the warming in the pipeline to show up. If we waited until climate change became unbearable, and then cut off our emissions completely, the situation would still get worse for decades before it stabilized.

The worldwide failure of governments to take action on climate change is baffling. It seems that the best they can do is occasionally promise to fix the problem, but never actually get started. If this continues for much longer, we’re all going to pay the price for their mistakes – and so will people for generations to come.

What’s the Warmest Year – and Does it Matter?

Cross-posted from NextGenJournal

Climate change is a worrying phenomenon, but watching it unfold can be fascinating. The beginning of a new year brings completed analysis of what last year’s conditions were like. Perhaps the most eagerly awaited annual statistic is global temperature.

This year was no different – partway through 2010, scientists could tell that it had a good chance of being the warmest year on record. It turned out to be more or less tied for first, as top temperature analysis centres recently announced:

Why the small discrepancy in the order of  1998, 2005, and 2010? The answer is mainly due to the Arctic. Weather stations in the Arctic region are few and far between, as it’s difficult to have a permanent station on ice floes that move around, and are melting away. Scientists, then, have two choices in their analyses: extrapolate Arctic temperature anomalies from the stations they do have, or just leave the missing areas out, assuming that they’re warming at the global average rate. The first choice might lead to results that are off in either direction…but the second choice almost certainly underestimates warming, as it’s clear that climate change is affecting the Arctic much more and much faster than the global average. Currently, NASA is the only centre to do extrapolation in Arctic data. A more detailed explanation is available here.

But how useful is an annual measurement of global temperature? Not very, as it turns out. Short-term climate variability, most prominently El Nino and La Nina, impact annual temperatures significantly. Furthermore, since this oscillation occurs in the winter, the thermal influence of El Nino or La Nina can fall entirely into one calendar year, or be split between two. The result is a graph that’s rather spiky:

A far more useful analysis involves plotting a 12-month running mean. Instead of measuring only from January to December, measurements are also compiled from February to January, March to February, and so on. This results in twelve times more data points, and prevents El Nino and La Nina events from being exaggerated:

This graph is better, but still not that useful. The natural spikiness of the El Nino cycle can, in the short term, get in the way of understanding the underlying trend. Since the El Nino cycle takes between 3 and 7 years to complete, a 60-month (5-year) running mean allows the resulting ups and downs to cancel each other out. Another cycle that impacts short-term temperature is the sunspot cycle, which operates on an 11-year cycle. A 132-month running mean smooths out that influence too. Both 60- and 132- month running means are shown below:

A statistic every month that shows the average global temperature over the last 5 or 11 years may not be as exciting as an annual measurement regarding the previous year. But that’s the reality of climate change. It doesn’t make every month or even every year warmer than the last, and a short-term trend line means virtually nothing. In the climate system, trends are always obscured by noise, and the nature of human psychology means we pay far more attention to noise. Nonetheless, the long-term warming trend since around 1975 is irrefutable when one is presented with the data. A gradual, persistent change might not make the greatest headline, but that doesn’t mean it’s worth ignoring.

The Unofficial Climate Change Book Awards

Cross-posted from NextGen Journal

As an aspiring climate scientist, I have read dozens of books about climate change over the past few years. Here are my all-time favourites, which I present with Unofficial Climate Change Book Awards. (Unfortunately, the prizes consist entirely of bragging rights.)


Best Analysis of Future Scenarios
Climate Wars, by Gwynne Dyer
View on Amazon.com

Most of us are aware of how climate change will impact the world: more extreme weather, prolonged floods and droughts, dwindling glaciers and sea ice. In this book, renowned Canadian journalist and military historian Gwynne Dyer goes one step further, and explores how these physical impacts might affect geopolitical relations. Will India and Pakistan engage in nuclear warfare over clean water? Will the United States and Russia begin a “Colder War” over Arctic sovereignty? Many of the scenarios he writes about are, frankly, terrifying, and all have a frightening grain of plausibility to them. Read the full review


Best Introduction to Climate Science
The Discovery of Global Warming, by Spencer Weart
View on Amazon.com

Scientists overwhelmingly agree that human-caused climate change is underway, but instead of simply stating this conclusion, Weart tells the story of how it was reached: tracing the theory from the 1800s to today. This innovative approach to science education, combined with Weart’s elegant prose, makes the book a joy to read. It doesn’t feel like a textbook, although it contains as much information as one. Read the full review


Best Exposé
Climate Cover-Up, by James Hoggan and Richard Littlemore
View on Amazon.com

If scientists are so sure about the reality of anthropogenic climate change, why does so much of the public think that it’s natural/nonexistent/a global conspiracy? Why does the media present the issue as an equal-sided scientific debate? This confusion didn’t just happen by accident – it was deliberately constructed. Over the past two decades, lobby groups representing industries or ideologies that seek to delay action on climate change have engaged in a campaign to spread doubt about the reality of the problem. This book, rather than throwing around baseless accusations, methodically examines the paper trail of this widespread campaign. Reading Climate Cover-Up is an infuriating but absolutely necessary journey to take. Read the full review


Best Policy Discussion
Storms of my Grandchildren, by Dr. James Hansen
View on Amazon.com

James Hansen is possibly the most prominent climate scientist alive today, and that title is well-deserved. Throughout his career at NASA, he has frequently made discoveries that were ahead of his time. Dr. Hansen is a very intrinsic scientist who doesn’t enjoy being in the spotlight or talking about policy, but he wrote this book for fear of his grandchildren looking back at his work and saying, “Opa understood what was happening, but he did not make it clear.” Although he couldn’t resist slipping in a few chapters about the current frontiers of climate science, the bulk of the book is about policy, featuring compelling arguments for expanded nuclear power, a moratorium on coal, and a rising price on carbon. Read the full review


Best Canadian Focus
Keeping Our Cool, by Dr. Andrew Weaver
View on Amazon.com

Andrew Weaver is Canada’s top climate modeller, and a fantastic role model for science communication. This book gives a high-level, yet accessible, explanation of the mathematics of climate change – if you have some basic knowledge of calculus and statistics, you should be fine. However, what really makes this book stand out is its focus on Canadian climate journalism and politics, a rare quality in a field dominated by American research. We all know about George W. Bush’s track record of inaction, but what has Prime Minister Stephen Harper done (or not done)? High-profile studies exist on American media coverage of global warming, but how does the Canadian press compare? Read the full review


Best Insider’s Account
Science as a Contact Sport, by Dr. Stephen Schneider
View on Amazon.com

The late Stephen Schneider, who unexpectedly died last summer of a heart attack, is a true pioneer of climate modelling. He has been active in the field since the 1970s, when computers became fast enough to handle mathematical models. This memoir explains what it’s like to be a climate scientist, and how that has changed over the years. In the 70s, Schneider and his colleagues filled their mind with purely analytical questions, but today, they have to deal with the media, politicians, and hate mail as well. Science used to just be about science, but now it’s about communication as well. Read the full review


Most Gripping
Snowball Earth, by Gabrielle Walker
View on Amazon.com

Gabrielle Walker is a brilliant woman, as she possesses the ability to make a book about geology every bit as gripping as a murder mystery. Granted, Snowball Earth, a recent theory of climatic conditions during the Precambrian Era, is fascinating. In short, the continents were arranged in such a manner that the Earth would swing back and forth between “Snowball Earth” (frozen oceans and frozen land all over, even at the Equator) and “Hothouse Earth” (massive global warming from volcanic emissions of carbon dioxide). Until this period of massive climatic swings, the only thing that lived on Earth was unicellular goop…but immediately following the Snowball Earth cycles, complex life appeared. Many scientists don’t think this evolutionary timing was a coincidence. It’s possible that multicellular organisms, including us, only exist because of an accident of plate tectonics. Read the full review


If you would like to contest any of my decisions for these awards, please feel free to do so in the comments!

“It’s Just a Natural Cycle”

My second rebuttal for Skeptical Science. Thanks to all the folks who helped to review it! Further suggestions are welcome, as always. -Kate

“What if global warming is just a natural cycle?” This argument is, perhaps, one of the most common raised by the average person, rather than someone who makes a career out of denying climate change. Cyclical variations in climate are well-known to the public; we all studied the ice ages in school. However, climate isn’t inherently cyclical.

A common misunderstanding of the climate system characterizes it like a pendulum. The planet will warm up to “cancel out” a previous period of cooling, spurred by some internal equilibrium. This view of the climate is incorrect. Internal variability will move energy between the ocean and the atmosphere, causing short-term warming and cooling of the surface in events such as El Nino and La Nina, and longer-term changes when similar cycles operate on decadal scales. However, internal forces do not cause climate change. Appreciable changes in climate are the result of changes in the energy balance of the Earth, which requires “external” forcings, such as changes in solar output, albedo, and atmospheric greenhouse gases. These forcings can be cyclical, as they are in the ice ages, but they can come in different shapes entirely.

For this reason, “it’s just a natural cycle” is a bit of a cop-out argument. The Earth doesn’t warm up because it feels like it. It warms up because something forces it to. Scientists keep track of natural forcings, but the observed warming of the planet over the second half of the 20th century can only be explained by adding in anthropogenic radiative forcings, namely increases in greenhouse gases such as carbon dioxide.

Of course, it’s always possible that some natural cycle exists, unknown to scientists and their instruments, that is currently causing the planet to warm. There’s always a chance that we could be totally wrong. This omnipresent fact of science is called irreducible uncertainty, because it can never be entirely eliminated. However, it’s very unlikely that such a cycle exists.

Firstly, the hypothetical natural cycle would have to explain the observed “fingerprints” of greenhouse gas-induced warming. Even if, for the sake of argument, we were to discount the direct measurements showing an increased greenhouse effect, other lines of evidence point to anthropogenic causes. For example, the troposphere (the lowest part of the atmosphere) is warming, but the levels above, from the stratosphere up, are cooling, as less radiation is escaping out to space. This rules out cycles related to the Sun, as solar influences would warm the entire atmosphere in a uniform fashion. The only explanation that makes sense is greenhouse gases.

What about an internal cycle, perhaps from volcanoes or the ocean, that releases massive amounts of greenhouse gases? This wouldn’t make sense either, not only because scientists keep track of volcanic and oceanic emissions of CO2 and know that they are small compared to anthropogenic emissions, but also because CO2 from fossil fuels has its own fingerprints. Its isotopic signature is depleted in the carbon-13 isotope, which explains why the atmospheric ratio of carbon-12 to carbon-13 has been going down as anthropogenic carbon dioxide goes up. Additionally, atmospheric oxygen (O2) is decreasing at the same rate that CO2 is increasing, because oxygen is consumed when fossil fuels combust.

A natural cycle that fits all these fingerprints is nearly unfathomable. However, that’s not all the cycle would have to explain. It would also have to tell us why anthropogenic greenhouse gases are not having an effect. Either a century of basic physics and chemistry studying the radiative properties of greenhouse gases would have to be proven wrong, or the natural cycle would have to be unbelievably complex to prevent such dramatic anthropogenic emissions from warming the planet.

It is indeed possible that multidecadal climate variabilityespecially cycles originating in the Atlantic, could be contributing to recent warming, particularly in the Arctic. However, the amplitude of the cycles simply can’t explain the observed temperature change. Internal variability has always been superimposed on top of global surface temperature trends, but the magnitude – as well as the fingerprints – of current warming clearly indicates that anthropogenic greenhouse gases are the dominant factor.

Despite all these lines of evidence, many known climatic cycles are often trumpeted to be the real cause, on the Internet and in the media. Many of these cycles have been debunked on Skeptical Science, and all of them either aren’t in the warming phases, don’t fit the fingerprints, or both.

For example, we are warming far too fast to be coming out of the last ice age, and the Milankovitch cycles that drive glaciation show that we should be, in fact, very slowly going into a new ice age (but anthropogenic warming is virtually certain to offset that influence).

The “1500-year cycle” that S. Fred Singer attributes warming to is, in fact, a change in distribution of thermal energy between the poles, not a net increase in global temperature, which is what we observe now.

The Little Ice Age following the Medieval Warm Period ended due to a slight increase in solar output (changes in both thermohaline circulation and volcanic activity also contributed), but that increase has since reversed, and global temperature and solar activity are now going in opposite directions. This also explains why the 11-year solar cycle could not be causing global warming.

ENSO (El Nino Southern Oscillation) and PDO (Pacific Decadal Oscillation) help to explain short-term variations, but have no long-term trend, warming or otherwise. Additionally, these cycles simply move thermal energy between the ocean and the atmosphere, and do not change the energy balance of the Earth.

As we can see, “it’s just a natural cycle” isn’t just a cop-out argument – it’s something that scientists have considered, studied, and ruled out long before you and I even knew what global warming was.

Snowstorms and Sea Ice

Cross-posted from NextGen Journal

“That’s some global warming”, Fox News proudly announced. “Rare winter storm dumps several inches of snow across South.” It’s cold outside, and/or it’s snowing, so therefore global warming can’t be happening. Impeccable logic, or rampant misconception?

It happened last winter, and again so far this season: unusual snow and extreme cold thrashed the United States, Europe, and Russia. Climate change deniers, with a response as predictable as Newton’s Laws, trumpeted the conditions as undeniable proof that the world simply could not be warming. Even average people, understandably confused by conflicting media reports, started to wonder if global warming was really such a watertight theory.

But sit and think about it for a minute. If it’s cold right now in the place where you live, that doesn’t mean it’s cold everywhere else. It’s simply not possible to look at your little corner of the world and extrapolate those conditions to the entire planet. There’s a reason it’s called global warming, and not “everywhere-all-the-time warming”. Climate change increases the amount of thermal energy on our planet, but that doesn’t mean the extra energy will be distributed equally.

That said, an interesting weather condition has been prominent over the past month, telling a fascinating story that begins in the Arctic. At the recent American Geophysical Union conference in San Fransisco, the largest annual gathering of geoscientists in the world, NOAA scientist Jim Overland described the situation.

Usually in winter, the air masses above the Arctic have low pressure, and the entire area is surrounded by a circular vortex of wind currents, keeping the frigid polar air contained. Everything is what you’d expect: a cold Arctic and mild continents. These conditions are known as the positive phase of the North Atlantic Oscillation (NAO), an index of fluctuating wind and temperature patterns that impacts weather on both sides of the Atlantic.

The negative phase is different, and quite rare: high pressure over the Arctic forces the cold air to spill out over North America and Eurasia, allowing warm air to rush in to the polar region. Meteorologist Jeff Masters has a great analogy for a negative NAO: it’s “kind of like leaving the refrigerator door ajar–the refrigerator warms up, but all of the cold air spills out into the house.” The Arctic becomes unusually warm, and the temperate regions of the surrounding continents become unusually cold. Nobody visually depicts this pattern better than freelance journalist Peter Sinclair:

So what’s been causing this rare shift to the negative NAO the past two winters? In fact, global warming itself could easily be the culprit. Strong warming over the Arctic is melting the sea ice, not just in the summer, but year-round. Open water in the Arctic Ocean during the winter allows heat to flow from the ocean to the atmosphere, creating the high pressure needed for a negative NAO to materialize. Paradoxically, the cold, snowy weather many of us are experiencing could be the result of a warming planet.

An emerging debate among scientists questions which force will win out over winters in Europe and North America: the cooling influence of more negative NAO conditions, or the warming influence of climate change itself? A recent study in the Journal of Geophysical Research predicts a threefold increase in the likelihood of cold winters over “large areas including Europe” as global warming develops. On the other hand, scientists at GISS, the climate change team at NASA, counter that extreme lows in sea ice over the past decade have not always led to cold winters in Europe, as 7 out the past 10 winters there have been warmer than average.

Amid this new frontier in climate science, one thing is virtually certain: global warming has not stopped, despite what Fox News tells you. In fact, despite localized record cold, 2010 is expected to be either the warmest year on record or tied for first with 2005 (final analysis is not yet complete). What you see in your backyard isn’t always a representative sample.

Merchants of Doubt

I waited a long time to read this book – in retrospect, too long. I have long been a fan of Naomi Oreskes; I believe she is a brilliant and sensible scientist with a compelling way with words. On the other hand, nothing depresses me more quickly than reading about those who deliberately spread confusion on climate change for political reasons. After a particularly battering year for climate science in the public eye, I want to make sure I stay sane.

However, Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming, by Naomi Oreskes and Erik Conway, was oddly comforting. How could it be so, you might ask, given the subject matter?

It’s a good question. The book traces several key players, such as Frederick Seitz, S. Fred Singer, Bill Nierenberg, and Robert Jastrow, in their fight against mainstream science. Many of them were physicists in the era of atomic bomb development, and nearly all had been deeply influenced by the Cold War – they were anti-Communist to the point of extremism.

This extremism soon extended into science: any new discovery that seemed to necessitate government action was vehemently attacked by Seitz et al. Whether it was the harmful health effects of smoking, second-hand smoking, or DDT, and the existence of anthropogenic acid rain, ozone depletion, or climate change, the same people used the same strategies to sow doubt in the public mind, delaying the cry for action. The algorithm was relatively simple:

  • construct arguments against the phenomenon, which scientists had already addressed and ruled out
  • widely publish these arguments in the popular press, rather than scientific journals
  • demand that the mainstream media be neutral and provide “equal time” for their side of the so-called controversy
  • attack the professional integrity of the scientists who discovered and studied the phenomenon; label them as frauds and/or Communists
  • claim that action on this issue would be the beginning of the “slippery slope to socialism”

It’s enough to anger anyone who has the least bit of sympathy for science. The authors say it best:

Why would scientists dedicated to uncovering the truth about the natural world deliberately misrepresent the work of their own colleagues? Why would they spread accusations with no basis? Why would they refuse to correct their arguments once they had been shown to be incorrect? And why did the press continue to quote them, year after year, even as their claims were shown, one after another, to be false?

History repeated itself many times over, within the course of just a few decades. The attack against climate science that we are currently witnessing is just a larger-scale rehash of the pro-industry, anti-Communist fight against epidemiology, environmental chemistry, and so on. Until now, few attempts have been made to connect the dots, but Oreskes and Conway present a watertight and compelling thesis in Merchants of Doubt.

The hopeful part came when I realized this: all of the previous issues that Seitz et al attempted to discredit were eventually addressed, more or less successfully, by the government, even if some of the public is still confused about the science. Restrictions and regulations on smoking, along with education regarding its harms, has made tobacco use a semi-stigmatized practice in my generation, rather than a near-universal activity. The Montreal Protocol was largely a success, and stratospheric ozone is on the rise. The world, at least so far, has managed to avoid nuclear warfare.

Climate change is undoubtedly a more inevitable and wide-ranging problem, as it strikes at the heart of our fossil-fuel based economy, and will probably surpass, both in rate and magnitude, any change our species has seen in the global environment. However, since the attack against climate science has tracked so closely with previous campaigns, I can’t help but hope it will eventually end the same way: with the public and the government realizing the problem and employing effective measures to address it. I know it’s probably not very scientific of me to make this connection, but hope doesn’t have to be rational to be effective.