Archive for the ‘News and Reports’ Category

Climate change will increase ice shelf melt rates around Antarctica. That’s the not-very-surprising conclusion of my latest modelling study, done in collaboration with both Australian and German researchers, which was just published in Journal of Climate. Here’s the less intuitive result: much of the projected increase in melt rates is actually linked to a decrease in sea ice formation.

That’s a lot of different kinds of ice, so let’s back up a bit. Sea ice is just frozen seawater. But ice shelves (as well as ice sheets and icebergs) are originally formed of snow. Snow falls on the Antarctic continent, and over many years compacts into a system of interconnected glaciers that we call an ice sheet. These glaciers flow downhill towards the coast. If they hit the coast and keep going, floating on the ocean surface, the floating bits are called ice shelves. Sometimes the edges of ice shelves will break off and form icebergs, but they don’t really come into this story.

Climate models don’t typically include ice sheets, or ice shelves, or icebergs. This is one reason why projections of sea level rise are so uncertain. But some standalone ocean models do include ice shelves. At least, they include the little pockets of ocean beneath the ice shelves – we call them ice shelf cavities – and can simulate the melting and refreezing that happens on the ice shelf base.

We took one of these ocean/ice-shelf models and forced it with the atmospheric output of regular climate models, which periodically make projections of climate change from now until the end of the century. We completed four different simulations, consisting of two different greenhouse gas emissions scenarios (“Representative Concentration Pathways” or RCPs) and two different choices of climate model (“ACCESS 1.0”, or “MMM” for the multi-model mean). Each simulation required 896 processors on the supercomputer in Canberra. By comparison, your laptop or desktop computer probably has about 4 processors. These are pretty sizable models!

In every simulation, and in every region of Antarctica, ice shelf melting increased over the 21st century. The total increase ranged from 41% to 129% depending on the scenario. The largest increases occurred in the Amundsen Sea region, marked with red circles in the maps below, which happens to be the region exhibiting the most severe melting in recent observations. In the most extreme scenario, ice shelf melting in this region nearly quadrupled.

Percent change in ice shelf melting, caused by the ocean, during the four future projections. The values are shown for all of Antarctica (written on the centre of the continent) as well as split up into eight sectors (colour-coded, written inside the circles). Figure 3 of Naughten et al., 2018, © American Meteorological Society.

So what processes were causing this melting? This is where the sea ice comes in. When sea ice forms, it spits out most of the salt from the seawater (brine rejection), leaving the remaining water saltier than before. Salty water is denser than fresh water, so it sinks. This drives a lot of vertical mixing, and the heat from warmer, deeper water is lost to the atmosphere. The ocean surrounding Antarctica is unusual in that the deep water is generally warmer than the surface water. We call this warm, deep water Circumpolar Deep Water, and it’s currently the biggest threat to the Antarctic Ice Sheet. (I say “warm” – it’s only about 1°C, so you wouldn’t want to go swimming in it, but it’s plenty warm enough to melt ice.)

In our simulations, warming winters caused a decrease in sea ice formation. So there was less brine rejection, causing fresher surface waters, causing less vertical mixing, and the warmth of Circumpolar Deep Water was no longer lost to the atmosphere. As a result, ocean temperatures near the bottom of the Amundsen Sea increased. This better-preserved Circumpolar Deep Water found its way into ice shelf cavities, causing large increases in melting.

Slices through the Amundsen Sea – you’re looking at the ocean sideways, like a slice of birthday cake, so you can see the vertical structure. Temperature is shown on the top row (blue is cold, red is warm); salinity is shown on the bottom row (blue is fresh, red is salty). Conditions at the beginning of the simulation are shown in the left 2 panels, and conditions at the end of the simulation are shown in the right 2 panels. At the beginning of the simulation, notice how the warm, salty Circumpolar Deep Water rises onto the continental shelf from the north (right side of each panel), but it gets cooler and fresher as it travels south (towards the left) due to vertical mixing. At the end of the simulation, the surface water has freshened and the vertical mixing has weakened, so the warmth of the Circumpolar Deep Water is preserved. Figure 8 of Naughten et al., 2018, © American Meteorological Society.

This link between weakened sea ice formation and increased ice shelf melting has troubling implications for sea level rise. The next step is to simulate the sea level rise itself, which requires some model development. Ocean models like the one we used for this study have to assume that ice shelf geometry stays constant, so no matter how much ice shelf melting the model simulates, the ice shelves aren’t allowed to thin or collapse. Basically, this design assumes that any ocean-driven melting is exactly compensated by the flow of the upstream glacier such that ice shelf geometry remains constant.

Of course this is not a good assumption, because we’re observing ice shelves thinning all over the place, and a few have even collapsed. But removing this assumption would necessitate coupling with an ice sheet model, which presents major engineering challenges. We’re working on it – at least ten different research groups around the world – and over the next few years, fully coupled ice-sheet/ocean models should be ready to use for the most reliable sea level rise projections yet.

A modified version of this post appeared on the EGU Cryospheric Sciences Blog.


Read Full Post »

For many years politicians said, “We’re not even sure climate change is real, so why should we waste money studying it?”

And seemingly overnight, the message has become, “Now that we know climate change is real, we can stop studying it.”

Don’t believe me? This is what Larry Marshall, the chief executive of Australia’s federal science agency CSIRO, wrote in an email to staff earlier this month:

Our climate models are among the best in the world and our measurements honed those models to prove global climate change. That question has been answered, and the new question is what do we do about it, and how can we find solutions for the climate we will be living with?

And then he cut 110 of the 140 climate research jobs in CSIRO’s Oceans and Atmosphere division.

Larry’s statement on its own is perfectly reasonable, but as justification for cutting basic research it is nonsensical. As Andy Pitman, the director of my research centre, responded, “What he fails to realise is that to answer these new questions, you need the same climate scientists!”

Luckily climate scientists are a tough bunch, and we don’t take shit like this lying down.

Why CSIRO matters

There’s not very many people in the Southern Hemisphere, and certainly not very many people studying the climate. Australia is really the only Southern Hemisphere country with the critical mass of population and wealth to pull off a significant climate research programme. And historically, Australia has done this very well. I can attest that the climate modelling community is larger and more active in Australia than it is in Canada, despite Canada’s population being about 50% higher.

Some of this research is done in universities, mainly funded by Australian Research Council grants. I’m a part of this system and I love it – we have the freedom to steer our research in whatever direction we think is best, rather than having someone from the government tell us what we can and can’t study. But there isn’t very much stability. Projects are typically funded on a 3-5 year timeline, and with a success rate around 20% for most grant applications, you can never be sure how long a given project will continue. You wouldn’t want to be the official developers of a climate model in an environment like that. You certainly wouldn’t want to be in charge of a massive network of observations. And that is why we need governmental research organisations like CSIRO.

Right now CSIRO hosts the ACCESS model (Australian Community Climate and Earth-System Simulator) which is used by dozens of my friends and colleagues. ACCESS has a good reputation – I particularly like it because it simulates the Southern Ocean more realistically than just about any CMIP5 model. I think this is because it’s pretty much the only contribution to CMIP5 from the Southern Hemisphere. Even if a model is ostensibly “global”, the regions its developers focus on tend to be close to home.

The official ACCESS developers at CSIRO distribute new releases of the code, collect and resolve bug reports, organise submissions to model intercomparison projects like CMIP5, and continually work to improve model efficiency and performance. Some of this work is done in collaboration with the Bureau of Meteorology, the National Computational Infrastructure, the UK Met Office (which provides the atmosphere component of the model), and researchers at Australian universities. But CSIRO is the backbone of ACCESS, and it’s unclear what will happen to the model without its core development team. The Bureau and the universities simply will not be able to pick up the slack.

[It’s] completely understandable that someone who’s spent 20 years, for example, studying climate change, measuring climate change or modelling climate change, it’s perfectly understandable that they don’t want to stop doing that and we must respect that, and we must find a place for them in the rest of the innovation system, perhaps in an university.
Larry Marshall

Changing directions

In his letter to staff, Larry Marshall wrote that he wants CSIRO to focus on (among other things) “our management of the oceans, climate adaptation, climate interventions (geo-engineering), [and] emergency response to extreme events”. It’s clear that he wants climate research to move away from the question “Are we really, really, really sure that climate change is real?” and more towards “How will climate change impact us and what can we do about it?” Again, I completely agree. But here’s the thing, Larry: We’re already doing that. The research program that you want to eliminate is already evolving into the research program you want to replace it with.

Climate science is evolving in this manner all over the world, not just at CSIRO. Try publishing a paper that concludes “Yes, humans are changing the climate” and see how far you get. Your reviewers will almost certainly respond with “Is that all?” and hit reject. Papers like that were a big deal in the 80s and the 90s. But by now we’ve moved on to more interesting questions.

For example, I’m using ocean models to study how the Southern Ocean might melt the Antarctic Ice Sheet from the bottom up. I’m not doing this to “prove” climate change – how could I even do that in this context? – but to get a better understanding of how much and how fast the sea level will rise over the next few centuries. If we’re going to have to move Miami, Shanghai, New York, and countless other major coastal cities, it would be good to have a few decades’ notice. And we won’t have that kind of notice unless we understand what Antarctica’s doing, through a network of observations (to see what it’s doing right now) and modelling studies (to predict what it might do next).

Without measuring and modelling, our attempts at adaptation and mitigation will be shots in the dark. “The one thing that makes adaptation really difficult is uncertainty,” writes journalist Michael Slezak. “If you don’t know what the climate will be like in the future – whether it will be wetter or dryer, whether cyclones will be more or less frequent – then you can’t prepare. You cannot adapt for a future that you don’t understand.”

Someone’s going to have to convince me that measuring and modelling is far more important than mitigation – and at this point you know, none of my leadership believe that.
Larry Marshall

Scientists fight back!

My colleagues at CSIRO are having a difficult month. They know that most of them will lose their jobs, or their supervisors will lose their jobs, and that they may have to leave Australia to find another job. But they won’t know who’s staying and who’s going until early March – a full month after the announcement was first made. Due to Larry’s lack of consultation on this decision, the CSIRO staff are reportedly considering industrial action.

The really maddening part of this whole situation is that climate science was specifically targeted. Of the 350 job losses across CSIRO – which studies all kinds of things, not just climate science – 110 were to the climate unit of the Oceans and Atmosphere department, and a similar number to Land and Water. It wouldn’t be so insulting if CSIRO was trimming down a little bit everywhere to cope with its budget cuts. Instead, they’re directly targeting – and essentially eliminating – climate science. “”No one is saying climate change is not important, but surely mitigation, health, education, sustainable industries, and prosperity of the nation are no less important,” Larry wrote in response to mounting criticism. So are we going to cut all of those research programs too?

Climate scientists are rather battle-hardened after so many years of personal attacks by climate change deniers, and everyone jumped into action following CSIRO’s announcement. At the annual meeting of the Australian Meteorological and Oceanographic Society the following week, the attendees organised a bit of a demonstration. It’s not often that the Sydney Morning Herald publishes a photo of “angry scientists”:

(I know just about everyone in this photo. The guy front and centre shares a cubicle with me. Hi Stefan!)

Then scientists from outside Australia started to get involved. The normally-staid World Climate Research Program released an official statement condemning CSIRO’s decision. “Australia will find itself isolated from the community of nations and researchers devoting serious attention to climate change,” they warned.

A few days later an open letter, signed by 2800 climate scientists from almost 60 countries, was sent to the CSIRO and the Australian government. “Without CSIRO’s involvement in both climate measurement and modelling, a significant portion of the Southern Hemisphere oceans and atmosphere will go unmonitored,” the letter warned. You can tell it was written by scientists because it’s complete with references and footnotes, and the signatories are carefully organised both alphabetically and by country.

We’re not sure if our efforts will make any difference. We’ll find out next month whether or not these cuts really will go ahead. Media coverage of this issue has slowed, and there have been no more announcements out of CSIRO. But I suppose we’ve done everything we can.

I feel like the early climate scientists in the ’70s fighting against the oil lobby…I guess I had the realisation that the climate lobby is perhaps more powerful than the energy lobby was back in the ’70s – and the politics of climate I think there’s a lot of emotion in this debate. In fact it almost sounds more like religion than science to me.
Larry Marshall

Read Full Post »

I was scanning my blog stats the other day – partly to see if people were reading my new post on the Blue Mountains bushfires, partly because I just like graphs – when I noticed that an article I wrote nearly two years ago was suddenly getting more views than ever before:

The article in question highlights the scientific inaccuracies of the 2004 film The Day After Tomorrow, in which global warming leads to a new ice age. Now that I’ve taken more courses in thermodynamics I could definitely expand on the original post if I had the time and inclination to watch the film again…

I did a bit more digging in my stats and discovered that most viewers are reaching this article through Google searches such as “is the day after tomorrow true”, “is the day after tomorrow likely to happen”, and “movie review of a day after tomorrow if it is possible or impossible.” The answers are no, no, and impossible, respectively.

But why the sudden surge in interest? I think it is probably related to the record cold temperatures across much of the United States, an event which media outlets have dubbed the “polar vortex”. I prefer “Arctic barf”.

Part of the extremely cold air mass which covers the Arctic has essentially detached and spilled southward over North America. In other words, the Arctic has barfed on the USA. Less sexy terminology than “polar vortex”, perhaps, but I would argue it is more enlightening.

Greg Laden also has a good explanation:

The Polar Vortex, a huge system of swirling air that normally contains the polar cold air has shifted so it is not sitting right on the pole as it usually does. We are not seeing an expansion of cold, an ice age, or an anti-global warming phenomenon. We are seeing the usual cold polar air taking an excursion.

Note that other regions such as Alaska and much of Europe are currently experiencing unusually warm winter weather. On balance, the planet isn’t any colder than normal. The cold patches are just moving around in an unusual way.

Having grown up in the Canadian Prairies, where we experience daily lows below -30°C for at least a few days each year (and for nearly a month straight so far this winter), I can’t say I have a lot of sympathy. Or maybe I’m just bitter because I never got a day off school due to the cold? But seriously, nothing has to shut down if you plug in the cars at night and bundle up like an astronaut. We’ve been doing it for years.

Read Full Post »

During our time in Australia, my partner and I decided on a whim to spend a weekend in the Blue Mountains. This national park, a two-hour train ride west of Sydney, forms part of the Great Dividing Range: a chain of mountains which stretches from north to south across the entire country, separating the vast outback to the west from the narrow strip of coastal rainforest to the east.

For a region so close to Sydney, the Blue Mountains feel surprisingly remote. You can stand at any number of clifftops, gaze out over a seemingly endless stretch of land, and see no sign of civilization whatsoever. Or you can walk down into the valleys between the mountains and explore the rainforest, a vast expanse of ancient gumtrees that’s managed to hide koalas previously thought to have vanished, and possibly even an escaped panther.

Four months later, when we were safely back in Canada, the Blue Mountains bushfires began. It was October, barely even spring in the Southern Hemisphere. To have fires starting so early in the season was virtually unheard of.

The triggers for the fires were decidedly human-caused: arson, a botched army exercise, and sparking power lines. However, unusually hot, dry, and windy conditions allowed the fires to spread far more quickly than they would have in a more normal October.

To get from the clifftops of Echo Point to the walking trails in the valley below, we took the Giant Stairway, which is exactly what it sounds like. Imagine the steepest and narrowest stairway you can manage, cut into the stone cliff and reinforced with metal, and a handrail which you cling to for dear life. Make it 902 stairs long (by my count, so let’s say plus or minus 5) and wind it back and forth around the cliff. After a few minutes walking down the stairway your knees start to buckle, and you require more and longer breaks, but you still can’t see the bottom.

The exhaustion is worth it simply due to the view.

Sometimes we would see swarms of sulfur-crested cockatoos flying over the treetops hundreds of metres below. They looked like tiny white specks at such a distance, but we could still hear them squawking to one another.

The bushfires of 2013 didn’t affect any of the areas we visited in the Blue Mountains – in fact, none of the main tourism regions were damaged. The main losses occurred in residential areas in and around the Blue Mountains. As of October 19th, 208 houses and 40 non-residential buildings had been destroyed.

Despite the huge amount of property loss, there were only two fatalities from the bushfires. This relatively successful outcome was due to mass evacuations organized by the government of New South Wales. At one point a state of emergency was declared, which authorized police to force residents to leave their houses.

As the fires continued to burn out of control, westerly winds blew the smoke and ash right over Sydney. During sunsets the sky over Sydney Harbour turned a bright orange, giving the illusion of a city built on the surface of Mars.

I had heard about lyre birds, widely considered to be among the best mimics of the animal kingdom, many times before. In an elaborate courtship display, the male lyre bird perfectly imitates the songs of nearly every other bird in the forest, one after another like some kind of avian pop-music mashup. Lyre birds blow mockingbirds right out of the water.

Footage from the BBC of a lyre bird imitating camera shutters and chainsaws seemed too good to be true, but its authenticity was bolstered by a similar story from my friend at the climate lab in Sydney. Her neighbours had been doing renovations, and when they were finished the construction equipment went away but the sounds kept going. That’s when they discovered the lyre bird living in the garden.

We saw three or four lyre birds while hiking in the valley that weekend, but for the most part they just wandered around the forest floor, combing through the leaf litter with an outstretched foot and keeping their beaks firmly shut. It was winter in Australia, after all – not courtship season for most birds. On the last day of hiking, we sat by the side of the trail for a rest and a drink of water, while my partner quizzed me on the local bird calls.

“What kind of bird is making that song?”

“An eastern whip-bird, I think.

“Hang on, it just changed into a kookaburra.

“And now it’s a currawong?”

A few minutes later, a male lyre bird strolled out onto the path ahead of us, showing off his fantastic tail feathers and looking extremely pleased with himself.

It is well known among scientists that human-caused climate change increases the risk of severe bushfires. Spells of hot weather will obviously become more common as the planet warms, but so will prolonged droughts, especially in subtropical regions like Australia. Add an initial trigger, like a lightning strike or an abandoned campfire, and you have the perfect recipe for a bushfire.

The current Australian government, which has a history of questionable statements on climate change, really doesn’t want to believe this. Prime Minister Tony Abbott asserted that “these fires are certainly not a function of climate change, they’re a function of life in Australia”, while Environment Minister Greg Hunt cited Wikipedia during a similar statement. I was actually heartened by these events: the ensuing public outcry convinced me that Australians, by and large, do not buy into their government’s indifference on this issue.

It came as a surprise to nobody in the climate science community, and probably nobody in Australia, that 2013 was Australia’s warmest year on record. The previous record, set in 2005, was exceeded by a fairly significant 0.17°C. Even more remarkable was the fact that 2013 was an ENSO-neutral year. For Australia to shatter this temperature record without the help of El Niño indicates that something else (*cough cough climate change*) is at work.

Would the Blue Mountains bushfires have been so devastating without the help of human-caused climate change? In a cooler and wetter October, closer to the historical average, would the initial fire triggers have developed into anything significant? We’ll never know for sure. What we can say, though, is that bushfires like these will only become more common as climate change continues. This is what the future will look like.

Read Full Post »

At public hearings on the environmental impacts of proposed oil pipelines, Canadians are no longer allowed to discuss climate change: any testimonials concerning how the oil was produced (“upstream effects”) and what will happen when it is burned (“downstream effects”) are considered inadmissible. This new policy was part of a 2012 omnibus bill by the federal government.

So if we refuse to consider the risks, they don’t exist? Or does this government just not care? I’m not sure I want to know the answer.

See the very thoughtful article by Andy Skuce, a geologist who formerly worked in the Alberta oil sands.

Read Full Post »

On Monday evening, a Canadian research helicopter in northwest Nunavut crashed into the Arctic Ocean. Three men from the CGCS Amundsen research vessel were on board, examining the sea ice from above to determine the best route for the ship to take. All three were killed in the crash: climate scientist Klaus Hochheim, commanding officer Marc Thibault, and pilot Daniel Dubé.

The Amundsen recovered the bodies, which will be entrusted to the RCMP as soon as the ship reaches land. The helicopter remains at the bottom of the Arctic Ocean (~400 m deep); until it can be retrieved, the cause of the crash will remain unknown.

Klaus Hochheim

During my first two years of university, I worked on and off in the same lab as Klaus. He was often in the field, and I was often rushing off to class, so we only spoke a few times. He was very friendly and energetic, and I regret not getting to know him better. My thoughts are with the families, friends, and close colleagues of these three men, who have far more to mourn than I do.

Perhaps some solace can be found in the thought that they died doing what they loved best. All of the Arctic scientists I know are incredibly passionate about their field work: bring them down south for too long, and they start itching to get back on the ship. In the modern day, field scientists are perhaps the closest thing we have to explorers. Such a demanding job comes with immense personal and societal rewards, but also with risks.

These events remind me of another team of explorers that died while pursuing their calling, at the opposite pole and over a hundred years ago: the Antarctic expedition of 1912 led by Robert Falcon Scott. While I was travelling in New Zealand, I visited the Scott Memorial in the Queenstown public gardens. Carved into a stone tablet and set into the side of a boulder is an excerpt from Scott’s last diary entry. I thought the words were relevant to Monday night’s tragedy, so I have reproduced them below.

click to enlarge

We arrived within eleven miles of our old One Ton camp with fuel for one hot meal and food for two days. For four days we have been unable to leave the tent, the gale is howling about us. We are weak, writing is difficult, but, for my own sake, I do not regret this journey, which has shown that Englishmen can endure hardships, help one another, and meet death with as great a fortitude as ever in the past.

We took risks; we knew we took them. Things have come out against us, and therefore we have no cause for complaint, but bow to the will of providence, determined still to do our best to the last.

Had we lived I should have had a tale to tell of the hardihood, endurance, and courage of my companions which would have stirred the heart of every Englishman.

These rough notes and our dead bodies must tell the tale.

Read Full Post »

You may have already heard that carbon dioxide concentrations have surpassed 400 ppm. The most famous monitoring station, Mauna Loa Observatory in Hawaii, reached this value on May 9th. Due to the seasonal cycle, CO2 levels began to decline almost immediately thereafter, but next year they will easily blow past 400 ppm.

Of course, this milestone is largely arbitrary. There’s nothing inherently special about 400 ppm. But it’s a good reminder that while we were arguing about taxation, CO2 levels continued to quietly tick up and up.

In happier news, John Cook and others have just published the most exhaustive survey of the peer-reviewed climate literature to date. Read the paper here (open access), and a detailed but accessible summary here. Unsurprisingly, they found the same 97% consensus that has come up over and over again.

Cook et al read the abstracts of nearly 12 000 papers published between 1991 and 2011 – every single hit from the ISI Web of Science with the keywords “global climate change” or “global warming”. Several different people categorized each abstract, and the authors were contacted whenever possible to categorize their own papers. Using several different methods like this makes the results more reliable.

Around two-thirds of the studies, particularly the more recent ones, didn’t mention the cause of climate change. This is unsurprising, since human-caused warming has been common knowledge in the field for years. Similarly, seismology papers don’t usually mention that plate tectonics cause earthquakes, particularly in the abstracts where space is limited.

Among the papers which did express a position, 97.1% said climate change was human-caused. Again, unsurprising to anyone working in the field, but it’s news to many members of the public. The study has been widely covered in the mainstream media – everywhere from The Guardian to The Australian – and even President Obama’s Twitter feed.

Congratulations are also due to Andrew Weaver, my supervisor from last summer, who has just been elected to the British Columbia provincial legislature. He is not only the first-ever Green Party MLA in BC’s history, but also (as far as I know) the first-ever climate scientist to hold public office.

Governments the world over are sorely in need of officials who actually understand the problem of climate change. Nobody fits this description better than Andrew, and I think he is going to be great. The large margin by which he won also indicates that public support for climate action is perhaps higher than we thought.

Finally, my second publication came out this week in Climate of the Past. It describes an EMIC intercomparison project the UVic lab conducted for the next IPCC report, which I helped out with while I was there. The project was so large that we split the results into two papers (the second of which is in press in Journal of Climate). This paper covers the historical experiments – comparing model results from 850-2005 to observations and proxy reconstructions – as well as some idealized experiments designed to measure metrics such as climate sensitivity, transient climate response, and carbon cycle feedbacks.

Read Full Post »

Older Posts »